IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v147y2020ip2p2633-2642.html
   My bibliography  Save this article

Determining optimal designs for conventional and geothermal energy piles

Author

Listed:
  • Jelušič, Primož
  • Žlender, Bojan

Abstract

The article presents a comparative analysis of an optimal design for conventional and geothermal energy piles, based on mixed-integer and non-linear programming (MINLP) optimizations. To complete this analysis, a MINLP optimization model OPTPILE was constructed. The model is based on structure production costs, while the piles are made of more than one material. It was subjected to geotechnical designs, structural resistance and settlement constraints that satisfy the requirements of the ultimate and serviceability limit states of the Eurocode specifications and recommendations for design and analysis of geothermal energy piles. The optimal design of a conventional and geothermal energy pile was investigated for various soil and load conditions. A comparative analysis of MINLP optimizations were performed over a wide range of alternative scenarios: different vertical loads on the pile, alternatives of discrete cross-sections as well as different Young's moduli of the soil. Based on the calculated results, a recommended optimal design for a conventional pile and a geothermal energy pile were developed.

Suggested Citation

  • Jelušič, Primož & Žlender, Bojan, 2020. "Determining optimal designs for conventional and geothermal energy piles," Renewable Energy, Elsevier, vol. 147(P2), pages 2633-2642.
  • Handle: RePEc:eee:renene:v:147:y:2020:i:p2:p:2633-2642
    DOI: 10.1016/j.renene.2018.08.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118309662
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.08.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jalaluddin, & Miyara, Akio & Tsubaki, Koutaro & Inoue, Shuntaro & Yoshida, Kentaro, 2011. "Experimental study of several types of ground heat exchanger using a steel pile foundation," Renewable Energy, Elsevier, vol. 36(2), pages 764-771.
    2. Ghasemi-Fare, Omid & Basu, Prasenjit, 2016. "Predictive assessment of heat exchange performance of geothermal piles," Renewable Energy, Elsevier, vol. 86(C), pages 1178-1196.
    3. Han, Chanjuan & Yu, Xiong (Bill), 2017. "Feasibility of geothermal heat exchanger pile-based bridge deck snow melting system: A simulation based analysis," Renewable Energy, Elsevier, vol. 101(C), pages 214-224.
    4. Han, Chanjuan & Yu, Xiong (Bill), 2018. "An innovative energy pile technology to expand the viability of geothermal bridge deck snow melting for different United States regions: Computational assisted feasibility analyses," Renewable Energy, Elsevier, vol. 123(C), pages 417-427.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Primož Jelušič, 2024. "Enhancing Sustainability of Building Foundations with Efficient Open-End Pile Optimization," Sustainability, MDPI, vol. 16(16), pages 1-15, August.
    2. Heidari, Bahareh & Akbari Garakani, Amir & Mokhtari Jozani, Sahar & Hashemi Tari, Pooyan, 2022. "Energy piles under lateral loading: Analytical and numerical investigations," Renewable Energy, Elsevier, vol. 182(C), pages 172-191.
    3. Shirgir, Sina & Shamsaddinlou, Amir & Zare, Reza Najafi & Zehtabiyan, Sorour & Bonab, Masoud Hajialilue, 2023. "An efficient double-loop reliability-based optimization with metaheuristic algorithms to design soil nail walls under uncertain condition," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    4. Primož Jelušič & Tomaž Žula, 2023. "Sustainable Design of Circular Reinforced Concrete Column Sections via Multi-Objective Optimization," Sustainability, MDPI, vol. 15(15), pages 1-19, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cunha, R.P. & Bourne-Webb, P.J., 2022. "A critical review on the current knowledge of geothermal energy piles to sustainably climatize buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    2. Zhang, Guozhu & Cao, Ziming & Xiao, Suguang & Guo, Yimu & Li, Chenglin, 2022. "A promising technology of cold energy storage using phase change materials to cool tunnels with geothermal hazards," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    3. Maragna, Charles & Loveridge, Fleur, 2019. "A resistive-capacitive model of pile heat exchangers with an application to thermal response tests interpretation," Renewable Energy, Elsevier, vol. 138(C), pages 891-910.
    4. Bao, Xiaohua & Qi, Xuedong & Cui, Hongzhi & Tang, Waiching & Chen, Xiangsheng, 2022. "Experimental study on thermal response of a PCM energy pile in unsaturated clay," Renewable Energy, Elsevier, vol. 185(C), pages 790-803.
    5. Yuanlong Cui & Fan Zhang & Yiming Shao & Ssennoga Twaha & Hui Tong, 2022. "Techno-Economic Comprehensive Review of State-of-the-Art Geothermal and Solar Roadway Energy Systems," Sustainability, MDPI, vol. 14(17), pages 1-50, September.
    6. Cao, Ziming & Zhang, Guozhu & Liu, Yiping & Zhao, Xu & Li, Chenglin, 2022. "Influence of backfilling phase change material on thermal performance of precast high-strength concrete energy pile," Renewable Energy, Elsevier, vol. 184(C), pages 374-390.
    7. Fei, Wenbin & Bandeira Neto, Luis A. & Dai, Sheng & Cortes, Douglas D. & Narsilio, Guillermo A., 2023. "Numerical analyses of energy screw pile filled with phase change materials," Renewable Energy, Elsevier, vol. 202(C), pages 865-879.
    8. Charles Maragna & Fleur Loveridge, 2021. "A New Approach for Characterizing Pile Heat Exchangers Using Thermal Response Tests," Energies, MDPI, vol. 14(12), pages 1-18, June.
    9. Seokjae Lee & Sangwoo Park & Taek Hee Han & Jongmuk Won & Hangseok Choi, 2023. "Applicability Evaluation of Energy Slabs Installed in an Underground Parking Lot," Sustainability, MDPI, vol. 15(4), pages 1-15, February.
    10. Xiao-Hui Sun & Hongbin Yan & Mehrdad Massoudi & Zhi-Hua Chen & Wei-Tao Wu, 2018. "Numerical Simulation of Nanofluid Suspensions in a Geothermal Heat Exchanger," Energies, MDPI, vol. 11(4), pages 1-18, April.
    11. Tsubaki, Koutaro & Mitsutake, Yuichi, 2016. "Performance of ground-source heat exchangers using short residential foundation piles," Energy, Elsevier, vol. 104(C), pages 229-236.
    12. Atwany, Hanin & Hamdan, Mohammad O. & Abu-Nabah, Bassam A. & Alami, Abdul Hai & Attom, Mousa, 2020. "Experimental evaluation of ground heat exchanger in UAE," Renewable Energy, Elsevier, vol. 159(C), pages 538-546.
    13. Weidong Lyu & Hefu Pu & Jiannan (Nick) Chen, 2020. "Thermal Performance of an Energy Pile Group with a Deeply Penetrating U-Shaped Heat Exchanger," Energies, MDPI, vol. 13(21), pages 1-17, November.
    14. Zhi Chen & Bo Wang & Lifei Zheng & Henglin Xiao & Jingquan Wang, 2021. "Research on Heat Exchange Law and Structural Design Optimization of Deep Buried Pipe Energy Piles," Energies, MDPI, vol. 14(20), pages 1-19, October.
    15. Karytsas, Spyridon & Choropanitis, Ioannis, 2017. "Barriers against and actions towards renewable energy technologies diffusion: A Principal Component Analysis for residential ground source heat pump (GSHP) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 252-271.
    16. Zhao, Qiang & Chen, Baoming & Tian, Maocheng & Liu, Fang, 2018. "Investigation on the thermal behavior of energy piles and borehole heat exchangers: A case study," Energy, Elsevier, vol. 162(C), pages 787-797.
    17. Emanuele Bonamente & Andrea Aquino, 2017. "Life-Cycle Assessment of an Innovative Ground-Source Heat Pump System with Upstream Thermal Storage," Energies, MDPI, vol. 10(11), pages 1-10, November.
    18. Hossein Javadi & Javier F. Urchueguia & Seyed Soheil Mousavi Ajarostaghi & Borja Badenes, 2021. "Impact of Employing Hybrid Nanofluids as Heat Carrier Fluid on the Thermal Performance of a Borehole Heat Exchanger," Energies, MDPI, vol. 14(10), pages 1-26, May.
    19. He, Yuting & Jia, Min & Li, Xiaogang & Yang, Zhaozhong & Song, Rui, 2021. "Performance analysis of coaxial heat exchanger and heat-carrier fluid in medium-deep geothermal energy development," Renewable Energy, Elsevier, vol. 168(C), pages 938-959.
    20. Cardoso de Freitas Murari, Milena & de Hollanda Cavalcanti Tsuha, Cristina & Loveridge, Fleur, 2022. "Investigation on the thermal response of steel pipe energy piles with different backfill materials," Renewable Energy, Elsevier, vol. 199(C), pages 44-61.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:147:y:2020:i:p2:p:2633-2642. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.