Feasibility of geothermal heat exchanger pile-based bridge deck snow melting system: A simulation based analysis
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2016.08.062
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Self, Stuart J. & Reddy, Bale V. & Rosen, Marc A., 2013. "Geothermal heat pump systems: Status review and comparison with other heating options," Applied Energy, Elsevier, vol. 101(C), pages 341-348.
- Han, Chanjuan & Yu, Xiong (Bill), 2016. "Sensitivity analysis of a vertical geothermal heat pump system," Applied Energy, Elsevier, vol. 170(C), pages 148-160.
- Xu, Huining & Tan, Yiqiu, 2015. "Modeling and operation strategy of pavement snow melting systems utilizing low-temperature heating fluids," Energy, Elsevier, vol. 80(C), pages 666-676.
- Han, Chanjuan & Yu, Xiong (Bill), 2016. "Performance of a residential ground source heat pump system in sedimentary rock formation," Applied Energy, Elsevier, vol. 164(C), pages 89-98.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yuanlong Cui & Fan Zhang & Yiming Shao & Ssennoga Twaha & Hui Tong, 2022. "Techno-Economic Comprehensive Review of State-of-the-Art Geothermal and Solar Roadway Energy Systems," Sustainability, MDPI, vol. 14(17), pages 1-50, September.
- Chen, Zhaoxin & Li, Jiaxuan & Tang, Guoqiang & Zhang, Jiahao & Zhang, Donghai & Gao, Penghui, 2024. "High-efficiency heating and cooling technology with embedded pipes in buildings and underground structures: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
- Charles Maragna & Fleur Loveridge, 2021. "A New Approach for Characterizing Pile Heat Exchangers Using Thermal Response Tests," Energies, MDPI, vol. 14(12), pages 1-18, June.
- Cao, Xuan & Kong, Gangqiang & Han, Chanjuan, 2024. "Feasibility assessment of implementing energy pile-based snowmelt system on a practical bridge deck in diverse climate conditions across China," Energy, Elsevier, vol. 290(C).
- Nurullah Kayaci & Baris Burak Kanbur, 2023. "Numerical and Economic Analysis of Hydronic-Heated Anti-Icing Solutions on Underground Park Driveways," Sustainability, MDPI, vol. 15(3), pages 1-21, January.
- Jelušič, Primož & Žlender, Bojan, 2020. "Determining optimal designs for conventional and geothermal energy piles," Renewable Energy, Elsevier, vol. 147(P2), pages 2633-2642.
- Maragna, Charles & Loveridge, Fleur, 2019. "A resistive-capacitive model of pile heat exchangers with an application to thermal response tests interpretation," Renewable Energy, Elsevier, vol. 138(C), pages 891-910.
- Liu, Hongwei & Maghoul, Pooneh & Bahari, Ako & Kavgic, Miroslava, 2019. "Feasibility study of snow melting system for bridge decks using geothermal energy piles integrated with heat pump in Canada," Renewable Energy, Elsevier, vol. 136(C), pages 1266-1280.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ma, Z.D. & Jia, G.S. & Cui, X. & Xia, Z.H. & Zhang, Y.P. & Jin, L.W., 2020. "Analysis on variations of ground temperature field and thermal radius caused by ground heat exchanger crossing an aquifer layer," Applied Energy, Elsevier, vol. 276(C).
- Kayaci, Nurullah, 2020. "Energy and exergy analysis and thermo-economic optimization of the ground source heat pump integrated with radiant wall panel and fan-coil unit with floor heating or radiator," Renewable Energy, Elsevier, vol. 160(C), pages 333-349.
- Ma, Hongting & Li, Cong & Lu, Wenqian & Zhang, Zeyu & Yu, Shaojie & Du, Na, 2017. "Investigation on a solar-groundwater heat pump unit associated with radiant floor heating," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 972-977.
- Han, Chanjuan & Ellett, Kevin M. & Naylor, Shawn & Yu, Xiong (Bill), 2017. "Influence of local geological data on the performance of horizontal ground-coupled heat pump system integrated with building thermal loads," Renewable Energy, Elsevier, vol. 113(C), pages 1046-1055.
- Shohei Kaneko & Akira Tomigashi & Takeshi Ishihara & Gaurav Shrestha & Mayumi Yoshioka & Youhei Uchida, 2020. "Proposal for a Method Predicting Suitable Areas for Installation of Ground-Source Heat Pump Systems Based on Response Surface Methodology," Energies, MDPI, vol. 13(8), pages 1-18, April.
- Sorranat Ratchawang & Srilert Chotpantarat & Sasimook Chokchai & Isao Takashima & Youhei Uchida & Punya Charusiri, 2022. "A Review of Ground Source Heat Pump Application for Space Cooling in Southeast Asia," Energies, MDPI, vol. 15(14), pages 1-18, July.
- Ghalandari, Taher & Hasheminejad, Navid & Van den bergh, Wim & Vuye, Cedric, 2021. "A critical review on large-scale research prototypes and actual projects of hydronic asphalt pavement systems," Renewable Energy, Elsevier, vol. 177(C), pages 1421-1437.
- Yu Zhou & Asal Bidarmaghz & Nikolas Makasis & Guillermo Narsilio, 2021. "Ground-Source Heat Pump Systems: The Effects of Variable Trench Separations and Pipe Configurations in Horizontal Ground Heat Exchangers," Energies, MDPI, vol. 14(13), pages 1-15, June.
- Cao, Xuan & Kong, Gangqiang & Han, Chanjuan, 2024. "Feasibility assessment of implementing energy pile-based snowmelt system on a practical bridge deck in diverse climate conditions across China," Energy, Elsevier, vol. 290(C).
- Alcaraz, Mar & Vives, Luis & Vázquez-Suñé, Enric, 2017. "The T-I-GER method: A graphical alternative to support the design and management of shallow geothermal energy exploitations at the metropolitan scale," Renewable Energy, Elsevier, vol. 109(C), pages 213-221.
- Xu, Huining & Shi, Hao & Tan, Yiqiu & Ye, Qing & Liu, Xiujie, 2022. "Modeling and assessment of operation economic benefits for hydronic snow melting pavement system," Applied Energy, Elsevier, vol. 326(C).
- Ismail, M.S. & Moghavvemi, M. & Mahlia, T.M.I., 2013. "Energy trends in Palestinian territories of West Bank and Gaza Strip: Possibilities for reducing the reliance on external energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 117-129.
- Tang, F. & Lahoori, M. & Nowamooz, H. & Rosin-Paumier, S. & Masrouri, F., 2021. "A numerical study into effects of soil compaction and heat storage on thermal performance of a Horizontal Ground Heat Exchanger," Renewable Energy, Elsevier, vol. 172(C), pages 740-752.
- Nguyen, Hiep V. & Law, Ying Lam E. & Alavy, Masih & Walsh, Philip R. & Leong, Wey H. & Dworkin, Seth B., 2014. "An analysis of the factors affecting hybrid ground-source heat pump installation potential in North America," Applied Energy, Elsevier, vol. 125(C), pages 28-38.
- Shi, Yu & Song, Xianzhi & Wang, Gaosheng & McLennan, John & Forbes, Bryan & Li, Xiaojiang & Li, Jiacheng, 2019. "Study on wellbore fluid flow and heat transfer of a multilateral-well CO2 enhanced geothermal system," Applied Energy, Elsevier, vol. 249(C), pages 14-27.
- Meles, Tensay Hadush & Ryan, Lisa & Mukherjee, Sanghamitra C., 2022. "Heterogeneity in preferences for renewable home heating systems among Irish households," Applied Energy, Elsevier, vol. 307(C).
- Somogyi, Viola & Sebestyén, Viktor & Nagy, Georgina, 2017. "Scientific achievements and regulation of shallow geothermal systems in six European countries – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 934-952.
- Zhang, Shicong & Jiang, Yiqiang & Xu, Wei & Li, Huai & Yu, Zhen, 2016. "Operating performance in cooling mode of a ground source heat pump of a nearly-zero energy building in the cold region of China," Renewable Energy, Elsevier, vol. 87(P3), pages 1045-1052.
- Wu, Wei & Li, Xianting & You, Tian & Wang, Baolong & Shi, Wenxing, 2015. "Combining ground source absorption heat pump with ground source electrical heat pump for thermal balance, higher efficiency and better economy in cold regions," Renewable Energy, Elsevier, vol. 84(C), pages 74-88.
- Linlin Zhang & Zhonghua Shi & Tianhao Yuan, 2020. "Study on the Coupled Heat Transfer Model Based on Groundwater Advection and Axial Heat Conduction for the Double U-Tube Vertical Borehole Heat Exchanger," Sustainability, MDPI, vol. 12(18), pages 1-19, September.
More about this item
Keywords
Geothermal heat exchanger pile; Snow and ice removal; Geothermal heat pump; Pile foundation; Finite element simulation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:101:y:2017:i:c:p:214-224. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.