IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v147y2020ip1p947-956.html
   My bibliography  Save this article

Thermodynamic equilibrium analysis of the vapor phase hydrodeoxygenation of guaiacol

Author

Listed:
  • Silva, Nathacha Kare Gonçalves
  • Ribas, Rogério Marques
  • Monteiro, Robson Souza
  • Barrozo, Marcos Antônio de Souza
  • Soares, Ricardo Reis

Abstract

Vapor phase hydrodeoxygenation (HDO) is a prospective route for upgrading the downstream products derived from fast pyrolysis of lignocellulosic biomass. The objective is to produce transportation fuel or value-added chemicals using a sustainable feedstock. This work reports a thermodynamic chemical equilibrium analysis of the vapor phase HDO of guaiacol (2-methoxyphenol), model compound representative of the lignin portion of biomass,. The chemical equilibrium was determined by simulation in the temperature range of 500–1000 K, 1 atm, and using an isothermal equilibrium reactor. These conditions were chosen to match the atmospheric HDO of guaiacol studies. The equilibrium constant and the equilibrium conversion values determined may help on the explanation of reaction pathways of the catalytic HDO of guaiacol. Most of the reactions behaved exothermically and did not show thermodynamic restriction to occur, except the hydrogenation of the aromatic ring. The desirable reactions which remove oxygen without breaking C–C bonds were thermodynamically favored. The most stable molecules were dependent on both temperature and guaiacol concentration at feed.

Suggested Citation

  • Silva, Nathacha Kare Gonçalves & Ribas, Rogério Marques & Monteiro, Robson Souza & Barrozo, Marcos Antônio de Souza & Soares, Ricardo Reis, 2020. "Thermodynamic equilibrium analysis of the vapor phase hydrodeoxygenation of guaiacol," Renewable Energy, Elsevier, vol. 147(P1), pages 947-956.
  • Handle: RePEc:eee:renene:v:147:y:2020:i:p1:p:947-956
    DOI: 10.1016/j.renene.2019.09.059
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119313898
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.09.059?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Azadi, Pooya & Inderwildi, Oliver R. & Farnood, Ramin & King, David A., 2013. "Liquid fuels, hydrogen and chemicals from lignin: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 506-523.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matteo Borella & Alessandro A. Casazza & Gabriella Garbarino & Paola Riani & Guido Busca, 2022. "A Study of the Pyrolysis Products of Kraft Lignin," Energies, MDPI, vol. 15(3), pages 1-15, January.
    2. Chen, Zhu & Wan, Caixia, 2017. "Biological valorization strategies for converting lignin into fuels and chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 610-621.
    3. Ummartyotin, Sarute & Manuspiya, Hathaikarn, 2015. "A critical review on cellulose: From fundamental to an approach on sensor technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 402-412.
    4. Yan, Kai & Wu, Guosheng & Lafleur, Todd & Jarvis, Cody, 2014. "Production, properties and catalytic hydrogenation of furfural to fuel additives and value-added chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 663-676.
    5. Kirsten M. Davis & Marjorie Rover & Robert C. Brown & Xianglan Bai & Zhiyou Wen & Laura R. Jarboe, 2016. "Recovery and Utilization of Lignin Monomers as Part of the Biorefinery Approach," Energies, MDPI, vol. 9(10), pages 1-28, October.
    6. Saba, N. & Jawaid, M. & Hakeem, K.R. & Paridah, M.T. & Khalina, A. & Alothman, O.Y., 2015. "Potential of bioenergy production from industrial kenaf (Hibiscus cannabinus L.) based on Malaysian perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 446-459.
    7. Parascanu, M.M. & Sandoval-Salas, F. & Soreanu, G. & Valverde, J.L. & Sanchez-Silva, L., 2017. "Valorization of Mexican biomasses through pyrolysis, combustion and gasification processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 509-522.
    8. LiLu T. Funkenbusch & Michael E. Mullins & Lennart Vamling & Tallal Belkhieri & Nattapol Srettiwat & Olumide Winjobi & David R. Shonnard & Tony N. Rogers, 2019. "Technoeconomic assessment of hydrothermal liquefaction oil from lignin with catalytic upgrading for renewable fuel and chemical production," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(1), January.
    9. Dessbesell, Luana & Paleologou, Michael & Leitch, Mathew & Pulkki, Reino & Xu, Chunbao (Charles), 2020. "Global lignin supply overview and kraft lignin potential as an alternative for petroleum-based polymers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    10. Anna Partridge & Ekaterina Sermyagina & Esa Vakkilainen, 2020. "Impact of Pretreatment on Hydrothermally Carbonized Spruce," Energies, MDPI, vol. 13(11), pages 1-13, June.
    11. Du, Boyu & Liu, Chao & Wang, Xing & Han, Ying & Guo, Yanzhu & Li, Haiming & Zhou, Jinghui, 2020. "Renewable lignin-based carbon nanofiber as Ni catalyst support for depolymerization of lignin to phenols in supercritical ethanol/water," Renewable Energy, Elsevier, vol. 147(P1), pages 1331-1339.
    12. De Corato, Ugo & De Bari, Isabella & Viola, Egidio & Pugliese, Massimo, 2018. "Assessing the main opportunities of integrated biorefining from agro-bioenergy co/by-products and agroindustrial residues into high-value added products associated to some emerging markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 326-346.
    13. Chen, Huan & Wan, Kun & Zheng, Fangjuan & Zhang, Zhuo & Zhang, Yayun & Long, Donghui, 2021. "Mechanism insight into photocatalytic conversion of lignin for valuable chemicals and fuels production: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    14. Stefano Dell’Orco & Edoardo Miliotti & Giulia Lotti & Andrea Maria Rizzo & Luca Rosi & David Chiaramonti, 2020. "Hydrothermal Depolymerization of Biorefinery Lignin-Rich Streams: Influence of Reaction Conditions and Catalytic Additives on the Organic Monomers Yields in Biocrude and Aqueous Phase," Energies, MDPI, vol. 13(5), pages 1-22, March.
    15. Asina, FNU & Brzonova, Ivana & Kozliak, Evguenii & Kubátová, Alena & Ji, Yun, 2017. "Microbial treatment of industrial lignin: Successes, problems and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1179-1205.
    16. Ambursa, Murtala M. & Juan, Joon Ching & Yahaya, Y. & Taufiq-Yap, Y.H. & Lin, Yu-Chuan & Lee, Hwei Voon, 2021. "A review on catalytic hydrodeoxygenation of lignin to transportation fuels by using nickel-based catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    17. Radhakrishnan, Rokesh & Patra, Pradipta & Das, Manali & Ghosh, Amit, 2021. "Recent advancements in the ionic liquid mediated lignin valorization for the production of renewable materials and value-added chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    18. Tang, Xing & Zeng, Xianhai & Li, Zheng & Hu, Lei & Sun, Yong & Liu, Shijie & Lei, Tingzhou & Lin, Lu, 2014. "Production of γ-valerolactone from lignocellulosic biomass for sustainable fuels and chemicals supply," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 608-620.
    19. Xin Zhang & Yun-Ze Li & Ao-Bing Wang & Li-Jun Gao & Hui-Juan Xu & Xian-Wen Ning, 2020. "The Development Strategies and Technology Roadmap of Bioenergy for a Typical Region: A Case Study in the Beijing-Tianjin-Hebei Region in China," Energies, MDPI, vol. 13(4), pages 1-25, February.
    20. Bakhtyari, Ali & Rahimpour, Mohammad Reza & Raeissi, Sona, 2020. "Cobalt-molybdenum catalysts for the hydrodeoxygenation of cyclohexanone," Renewable Energy, Elsevier, vol. 150(C), pages 443-455.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:147:y:2020:i:p1:p:947-956. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.