IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i14p4123-d590839.html
   My bibliography  Save this article

Thermal Decomposition of Olive-Mill Byproducts: A TG-FTIR Approach

Author

Listed:
  • Małgorzata Wzorek

    (Department of Process and Environmental Engineering, Faculty of Mechanical Engineering, Opole University of Technology, 5 Mikołajczyka Str., 45-271 Opole, Poland)

  • Robert Junga

    (Department of Thermal Engineering and Industrial Facilities, Faculty of Mechanical Engineering, Opole University of Technology, 5 Mikołajczyka Str., 45-271 Opole, Poland)

  • Ersel Yilmaz

    (Department of Biosystems Engineering, Faculty of Agriculture, Adnan Menderes University, Aydin 09020, Turkey)

  • Bohdan Bozhenko

    (Department of Mathematics and IT Applications, Faculty of Production Engineering and Logistics, Opole University of Technology, 31 Sosnkowskiego Str., 45-271 Opole, Poland)

Abstract

In this study, the combustion of olive byproducts was investigated using the TG-FTIR technique. Different types of olive biomass were considered: twigs, leaves, olive-mill waste from the two-phase decanting method, and wastewater from the three-phase system. The reaction regions, ignition, and burnout temperatures at different heating rates were determined using TG/DTG analysis and the thermogravimetry results. Comprehensive combustion, ignition, burnout, and flammability indexes were also calculated. The highest combustion index values were obtained for waste from the three-phase system, followed by the two-phase decanting method, then with leaves and small twigs. The order of the index values indicated that the sample from the three-phase process ignited more quickly and yielded faster. The changes in activation energy calculated using different model-free isoconversional methods—Friedman, Ozawa–Flynn–Wall, and Kissinger–Akahira–Sunose—fell within the range of 130–140 kJ/kmol. FTIR analyses presented differences in the exhaust gas composition for specific combustion temperature ranges.

Suggested Citation

  • Małgorzata Wzorek & Robert Junga & Ersel Yilmaz & Bohdan Bozhenko, 2021. "Thermal Decomposition of Olive-Mill Byproducts: A TG-FTIR Approach," Energies, MDPI, vol. 14(14), pages 1-16, July.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:14:p:4123-:d:590839
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/14/4123/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/14/4123/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Garcia-Maraver, Angela & Perez-Jimenez, Jose A. & Serrano-Bernardo, Francisco & Zamorano, Montserrat, 2015. "Determination and comparison of combustion kinetics parameters of agricultural biomass from olive trees," Renewable Energy, Elsevier, vol. 83(C), pages 897-904.
    2. Saidur, R. & Abdelaziz, E.A. & Demirbas, A. & Hossain, M.S. & Mekhilef, S., 2011. "A review on biomass as a fuel for boilers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2262-2289, June.
    3. Guizani, Chamseddine & Haddad, Khouloud & Jeguirim, Mejdi & Colin, Baptiste & Limousy, Lionel, 2016. "Combustion characteristics and kinetics of torrefied olive pomace," Energy, Elsevier, vol. 107(C), pages 453-463.
    4. Lajili, M. & Guizani, C. & Escudero Sanz, F.J. & Jeguirim, M., 2018. "Fast pyrolysis and steam gasification of pellets prepared from olive oil mill residues," Energy, Elsevier, vol. 150(C), pages 61-68.
    5. Junga, Robert & Knauer, Waldemar & Niemiec, Patrycja & Tańczuk, Mariusz, 2017. "Experimental tests of co-combustion of laying hens manure with coal by using thermogravimetric analysis," Renewable Energy, Elsevier, vol. 111(C), pages 245-255.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Biagio Morrone, 2022. "Residual Biomass Conversion to Bioenergy," Energies, MDPI, vol. 15(16), pages 1-3, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Al Afif, Rafat & Linke, Bernd, 2019. "Biogas production from three-phase olive mill solid waste in lab-scale continuously stirred tank reactor," Energy, Elsevier, vol. 171(C), pages 1046-1052.
    2. Almendros, A.I. & Blázquez, G. & Ronda, A. & Martín-Lara, M.A. & Calero, M., 2017. "Study of the catalytic effect of nickel in the thermal decomposition of olive tree pruning via thermogravimetric analysis," Renewable Energy, Elsevier, vol. 103(C), pages 825-835.
    3. Santos Dalólio, Felipe & da Silva, Jadir Nogueira & Carneiro de Oliveira, Angélica Cássia & Ferreira Tinôco, Ilda de Fátima & Christiam Barbosa, Rúben & Resende, Michael de Oliveira & Teixeira Albino,, 2017. "Poultry litter as biomass energy: A review and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 941-949.
    4. Lelis Gonzaga Fraga & João Silva & Senhorinha Teixeira & Delfim Soares & Manuel Ferreira & José Teixeira, 2020. "Influence of Operating Conditions on the Thermal Behavior and Kinetics of Pine Wood Particles Using Thermogravimetric Analysis," Energies, MDPI, vol. 13(11), pages 1-22, June.
    5. Laphirattanakul, Ponepen & Charoensuk, Jarruwat & Turakarn, Chinnapat & Kaewchompoo, Chatchalerm & Suksam, Niwat, 2020. "Development of pulverized biomass combustor with a pre-combustion chamber," Energy, Elsevier, vol. 208(C).
    6. Suopajärvi, Hannu & Umeki, Kentaro & Mousa, Elsayed & Hedayati, Ali & Romar, Henrik & Kemppainen, Antti & Wang, Chuan & Phounglamcheik, Aekjuthon & Tuomikoski, Sari & Norberg, Nicklas & Andefors, Alf , 2018. "Use of biomass in integrated steelmaking – Status quo, future needs and comparison to other low-CO2 steel production technologies," Applied Energy, Elsevier, vol. 213(C), pages 384-407.
    7. Gürel, Barış & Kurtuluş, Karani & Yurdakul, Sema & Karaca Dolgun, Gülşah & Akman, Remzi & Önür, Muhammet Enes & Varol, Murat & Keçebaş, Ali & Gürbüz, Habib, 2024. "Combustion of chicken manure and Turkish lignite mixtures in a circulating fluidized bed," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    8. Yek, Peter Nai Yuh & Cheng, Yoke Wang & Liew, Rock Keey & Wan Mahari, Wan Adibah & Ong, Hwai Chyuan & Chen, Wei-Hsin & Peng, Wanxi & Park, Young-Kwon & Sonne, Christian & Kong, Sieng Huat & Tabatabaei, 2021. "Progress in the torrefaction technology for upgrading oil palm wastes to energy-dense biochar: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    9. Miguel-Angel Perea-Moreno & Quetzalcoatl Hernandez-Escobedo & Fernando Rueda-Martinez & Alberto-Jesus Perea-Moreno, 2020. "Zapote Seed ( Pouteria mammosa L. ) Valorization for Thermal Energy Generation in Tropical Climates," Sustainability, MDPI, vol. 12(10), pages 1-21, May.
    10. Kütt, Lauri & Millar, John & Karttunen, Antti & Lehtonen, Matti & Karppinen, Maarit, 2018. "Thermoelectric applications for energy harvesting in domestic applications and micro-production units. Part I: Thermoelectric concepts, domestic boilers and biomass stoves," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 519-544.
    11. Wang, Xuebin & Zhang, Jiaye & Xu, Xinwei & Mikulčić, Hrvoje & Li, Yan & Zhou, Yuegui & Tan, Houzhang, 2020. "Numerical study of biomass Co-firing under Oxy-MILD mode," Renewable Energy, Elsevier, vol. 146(C), pages 2566-2576.
    12. Carmen de la Cruz-Lovera & Francisco Manzano-Agugliaro & Esther Salmerón-Manzano & José-Luis de la Cruz-Fernández & Alberto-Jesus Perea-Moreno, 2019. "Date Seeds ( Phoenix dactylifera L. ) Valorization for Boilers in the Mediterranean Climate," Sustainability, MDPI, vol. 11(3), pages 1-14, January.
    13. Kluska, Jacek & Turzyński, Tomasz & Ochnio, Mateusz & Kardaś, Dariusz, 2020. "Characteristics of ash formation in the process of combustion of pelletised leather tannery waste and hardwood pellets," Renewable Energy, Elsevier, vol. 149(C), pages 1246-1253.
    14. Junga, Robert & Pospolita, Janusz & Niemiec, Patrycja, 2020. "Combustion and grindability characteristics of palm kernel shells torrefied in a pilot-scale installation," Renewable Energy, Elsevier, vol. 147(P1), pages 1239-1250.
    15. Hyukjin Oh & Kalyan Annamalai & Paul G. Goughner & Ben Thien & John M. Sweeten, 2021. "Reburning of Animal Waste Based Biomass with Coal for NO x Reduction, Part I: Feedlot Biomass (FB) and Coal:FB Blends," Energies, MDPI, vol. 14(23), pages 1-26, December.
    16. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
    17. Gutiérrez-Alvarez, R. & Guerra, K. & Haro, P., 2023. "Market profitability of CSP-biomass hybrid power plants: Towards a firm supply of renewable energy," Applied Energy, Elsevier, vol. 335(C).
    18. Guo, Feihong & He, Yi & Hassanpour, Ali & Gardy, Jabbar & Zhong, Zhaoping, 2020. "Thermogravimetric analysis on the co-combustion of biomass pellets with lignite and bituminous coal," Energy, Elsevier, vol. 197(C).
    19. Silva, D.A.L. & Filleti, R.A.P. & Musule, R. & Matheus, T.T. & Freire, F., 2022. "A systematic review and life cycle assessment of biomass pellets and briquettes production in Latin America," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    20. Xuejun Qian & Jingwen Xue & Yulai Yang & Seong W. Lee, 2021. "Thermal Properties and Combustion-Related Problems Prediction of Agricultural Crop Residues," Energies, MDPI, vol. 14(15), pages 1-18, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:14:p:4123-:d:590839. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.