IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v147y2020ip1p1107-1119.html
   My bibliography  Save this article

Influence of drying methods on the thermodynamic parameters, effective moisture diffusion and drying rate of wastewater sewage sludge

Author

Listed:
  • Ameri, Billal
  • Hanini, Salah
  • Boumahdi, Mouloud

Abstract

In this study, thin layer drying experiments of direct and indirect natural convection solar drying of wastewater sewage sludge in Algeria were conducted. The purpose of these was to analyze the effect of two methods of drying on different parameters, namely: drying rate, efficient diffusion of moisture, and thermodynamic parameters. Three new universal drying kinetic models were proposed and compared with four other models existing in the literature to model the drying process. The effective diffusivity of moisture of sludge (Deff) changed from 1.91 10−8 to 9.12 10−8 m2 s−1. It was obtained by using Fick's second law, based on the resolution by Laplace's transformation method and the Fourier series. Thermodynamic parameters, to know, activation energy, free energy change, enthalpy and entropy change, were also determined using a new methodology build on the evolution of effective diffusion coefficient in terms of temperature by adopting the Eyring equation.

Suggested Citation

  • Ameri, Billal & Hanini, Salah & Boumahdi, Mouloud, 2020. "Influence of drying methods on the thermodynamic parameters, effective moisture diffusion and drying rate of wastewater sewage sludge," Renewable Energy, Elsevier, vol. 147(P1), pages 1107-1119.
  • Handle: RePEc:eee:renene:v:147:y:2020:i:p1:p:1107-1119
    DOI: 10.1016/j.renene.2019.09.072
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119314028
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.09.072?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bennamoun, Lyes & Arlabosse, Patricia & Léonard, Angélique, 2013. "Review on fundamental aspect of application of drying process to wastewater sludge," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 29-43.
    2. Yaldiz, Osman & Ertekin, Can & Uzun, H.Ibrahim, 2001. "Mathematical modeling of thin layer solar drying of sultana grapes," Energy, Elsevier, vol. 26(5), pages 457-465.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meng, Fanbin & Wang, Donghai, 2020. "Effects of vacuum freeze drying pretreatment on biomass and biochar properties," Renewable Energy, Elsevier, vol. 155(C), pages 1-9.
    2. Badaoui, Ouassila & Djebli, Ahmed & Hanini, Salah, 2022. "Solar drying of apple and orange waste: Evaluation of a new thermodynamic approach, and characterization analysis," Renewable Energy, Elsevier, vol. 199(C), pages 1593-1605.
    3. Afshari, Faraz & Khanlari, Ataollah & Tuncer, Azim Doğuş & Sözen, Adnan & Şahinkesen, İstemihan & Di Nicola, Giovanni, 2021. "Dehumidification of sewage sludge using quonset solar tunnel dryer: An experimental and numerical approach," Renewable Energy, Elsevier, vol. 171(C), pages 784-798.
    4. Chen, Xiao & Yu, Ying-jun & Wang, Yi & Feng, Jing-chun & Zhang, Si & Ding, Zhi-bin & Tang, Li & Wu, Xiao-nan & Hu, Jun-lin, 2024. "Mutual disposal of municipal solid waste and flue gas on isolated islands," Applied Energy, Elsevier, vol. 353(PA).
    5. Arman Forouzanfar & Mohammad Hojjati & Mohammad Noshad & Antoni Jacek Szumny, 2020. "Influence of UV-B Pretreatments on Kinetics of Convective Hot Air Drying and Physical Parameters of Mushrooms ( Agaricus bisporus )," Agriculture, MDPI, vol. 10(9), pages 1-10, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. EL-Mesery, Hany S. & EL-Seesy, Ahmed I. & Hu, Zicheng & Li, Yang, 2022. "Recent developments in solar drying technology of food and agricultural products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    2. M. A. Tawfik & Khaled M. Oweda & M. K. Abd El-Wahab & W. E. Abd Allah, 2023. "A New Mode of a Natural Convection Solar Greenhouse Dryer for Domestic Usage: Performance Assessment for Grape Drying," Agriculture, MDPI, vol. 13(5), pages 1-27, May.
    3. Gulcimen, Fevzi & Karakaya, Hakan & Durmus, Aydın, 2016. "Drying of sweet basil with solar air collectors," Renewable Energy, Elsevier, vol. 93(C), pages 77-86.
    4. Çoban, Harun & Abuşka, Mesut, 2024. "Drying of Sultana seedless (Vitis vinifera L.) grape variety in indirect drying chamber using solar air collector with conic dimpled absorber: The case of end-season drying," Renewable Energy, Elsevier, vol. 220(C).
    5. Fuqiang Qiu & Baoguo Li & Taoping Xu & Dugui He, 2022. "Drying behavior and mathematical modeling of Tenebrio molitor using a closed system heat pump dryer [Evaluation of Tenebrio molitor larvae as an alternative food source]," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 17, pages 841-849.
    6. Deeto, S. & Thepa, S. & Monyakul, V. & Songprakorp, R., 2018. "The experimental new hybrid solar dryer and hot water storage system of thin layer coffee bean dehumidification," Renewable Energy, Elsevier, vol. 115(C), pages 954-968.
    7. Chandrasekar, M. & Senthilkumar, T. & Kumaragurubaran, B. & Fernandes, J. Peter, 2018. "Experimental investigation on a solar dryer integrated with condenser unit of split air conditioner (A/C) for enhancing drying rate," Renewable Energy, Elsevier, vol. 122(C), pages 375-381.
    8. Carotenuto, Alberto & Di Fraia, Simona & Massarotti, Nicola & Sobek, Szymon & Uddin, M. Rakib & Vanoli, Laura & Werle, Sebastian, 2023. "Predictive modeling for energy recovery from sewage sludge gasification," Energy, Elsevier, vol. 263(PB).
    9. Gómez-de la Cruz, Francisco J. & Casanova-Peláez, Pedro J. & Palomar-Carnicero, José M. & Cruz-Peragón, Fernando, 2014. "Drying kinetics of olive stone: A valuable source of biomass obtained in the olive oil extraction," Energy, Elsevier, vol. 75(C), pages 146-152.
    10. Di Fraia, S. & Massarotti, N. & Vanoli, L. & Costa, M., 2016. "Thermo-economic analysis of a novel cogeneration system for sewage sludge treatment," Energy, Elsevier, vol. 115(P3), pages 1560-1571.
    11. Akbulut, Abdullah & Durmuş, Aydin, 2010. "Energy and exergy analyses of thin layer drying of mulberry in a forced solar dryer," Energy, Elsevier, vol. 35(4), pages 1754-1763.
    12. Kossińska, Nina & Krzyżyńska, Renata & Ghazal, Heba & Jouhara, Hussam, 2023. "Hydrothermal carbonisation of sewage sludge and resulting biofuels as a sustainable energy source," Energy, Elsevier, vol. 275(C).
    13. Dutta, Pooja & Dutta, Partha Pratim & Kalita, Paragmoni, 2021. "Thermal performance studies for drying of Garcinia pedunculata in a free convection corrugated type of solar dryer," Renewable Energy, Elsevier, vol. 163(C), pages 599-612.
    14. Amer, Baher M.A. & Gottschalk, Klaus & Hossain, M.A., 2018. "Integrated hybrid solar drying system and its drying kinetics of chamomile," Renewable Energy, Elsevier, vol. 121(C), pages 539-547.
    15. R.K. Jha & P.K. Prabhakar & P.P. Srivastav & V.V. Rao, 2015. "Influence of temperature on vacuum drying characteristics, functional properties and micro structure of Aloe vera (Aloe barbadensis Miller) gel," Research in Agricultural Engineering, Czech Academy of Agricultural Sciences, vol. 61(4), pages 141-149.
    16. H. Samimi. Akhijani & A. Arabhosseini & M.H. Kianmehr, 2016. "Effective moisture diffusivity during hot air solar drying of tomato slices," Research in Agricultural Engineering, Czech Academy of Agricultural Sciences, vol. 62(1), pages 15-23.
    17. Calise, F. & Di Fraia, S. & Macaluso, A. & Massarotti, N. & Vanoli, L., 2018. "A geothermal energy system for wastewater sludge drying and electricity production in a small island," Energy, Elsevier, vol. 163(C), pages 130-143.
    18. Do, Truong Xuan & Lim, Young-il & Cho, Hyodeuk & Shim, Jaehui & Yoo, Jeongkeun & Rho, Kyutai & Choi, Seong-Geun & Park, Chanwoo & Park, Byeong-Yun, 2018. "Techno-economic analysis of fry-drying and torrefaction plant for bio-solid fuel production," Renewable Energy, Elsevier, vol. 119(C), pages 45-53.
    19. Hamdi, Ilhem & Kooli, Sami & Elkhadraoui, Aymen & Azaizia, Zaineb & Abdelhamid, Fadhel & Guizani, Amenallah, 2018. "Experimental study and numerical modeling for drying grapes under solar greenhouse," Renewable Energy, Elsevier, vol. 127(C), pages 936-946.
    20. ELkhadraoui, Aymen & Kooli, Sami & Hamdi, Ilhem & Farhat, Abdelhamid, 2015. "Experimental investigation and economic evaluation of a new mixed-mode solar greenhouse dryer for drying of red pepper and grape," Renewable Energy, Elsevier, vol. 77(C), pages 1-8.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:147:y:2020:i:p1:p:1107-1119. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.