IDEAS home Printed from https://ideas.repec.org/a/caa/jnlrae/v61y2015i4id13-2014-rae.html
   My bibliography  Save this article

Influence of temperature on vacuum drying characteristics, functional properties and micro structure of Aloe vera (Aloe barbadensis Miller) gel

Author

Listed:
  • R.K. Jha

    (Department of Agricultural and Food Engineering, Indian Institute of Technology, Kharagpur, India)

  • P.K. Prabhakar

    (Department of Agricultural and Food Engineering, Indian Institute of Technology, Kharagpur, India)

  • P.P. Srivastav

    (Department of Agricultural and Food Engineering, Indian Institute of Technology, Kharagpur, India)

  • V.V. Rao

    (Cryogenic Engineering Centre, Indian Institute of Technology, Kharagpur, India)

Abstract

Aloe vera possesses therapeutic, antioxidant and some other functional properties. These properties may be affected by processing operations. The present study investigated the influence of operating temperature on vacuum drying characteristics, functional properties and the inner solid structure of the fresh aloe vera gel. The gel was dried at a constant pressure of 720 mm Hg in the drying chamber at varying temperature of 30-60°C. The experimental data of moisture ratio of Aloe vera were used to fit different models and the effective moisture diffusion coefficients and activation energy were also calculated. The Page model was found to be the best fit to experimental data. The functional properties like water retention capacity, fat absorption capacity, and swelling of the dried product were studied and found to be decreased with increasing operating temperature. The damage to the inner solid structure was more pronounced at higher temperatures because of faster mass transfer through the pores of the solid. The best quality product was obtained when the temperature was maintained at 30°C.

Suggested Citation

  • R.K. Jha & P.K. Prabhakar & P.P. Srivastav & V.V. Rao, 2015. "Influence of temperature on vacuum drying characteristics, functional properties and micro structure of Aloe vera (Aloe barbadensis Miller) gel," Research in Agricultural Engineering, Czech Academy of Agricultural Sciences, vol. 61(4), pages 141-149.
  • Handle: RePEc:caa:jnlrae:v:61:y:2015:i:4:id:13-2014-rae
    DOI: 10.17221/13/2014-RAE
    as

    Download full text from publisher

    File URL: http://rae.agriculturejournals.cz/doi/10.17221/13/2014-RAE.html
    Download Restriction: free of charge

    File URL: http://rae.agriculturejournals.cz/doi/10.17221/13/2014-RAE.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/13/2014-RAE?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yaldiz, Osman & Ertekin, Can & Uzun, H.Ibrahim, 2001. "Mathematical modeling of thin layer solar drying of sultana grapes," Energy, Elsevier, vol. 26(5), pages 457-465.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Annisa Kusumaningrum & Dwi Joko Prasetyo & Ervika Rahayu Novita Herawati & Asep Nurhikmat, 2019. "Modelling the drying characteristics of the traditional Indonesian crackers "kerupuk"," Research in Agricultural Engineering, Czech Academy of Agricultural Sciences, vol. 65(4), pages 137-144.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. EL-Mesery, Hany S. & EL-Seesy, Ahmed I. & Hu, Zicheng & Li, Yang, 2022. "Recent developments in solar drying technology of food and agricultural products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    2. M. A. Tawfik & Khaled M. Oweda & M. K. Abd El-Wahab & W. E. Abd Allah, 2023. "A New Mode of a Natural Convection Solar Greenhouse Dryer for Domestic Usage: Performance Assessment for Grape Drying," Agriculture, MDPI, vol. 13(5), pages 1-27, May.
    3. Gulcimen, Fevzi & Karakaya, Hakan & Durmus, Aydın, 2016. "Drying of sweet basil with solar air collectors," Renewable Energy, Elsevier, vol. 93(C), pages 77-86.
    4. Çoban, Harun & Abuşka, Mesut, 2024. "Drying of Sultana seedless (Vitis vinifera L.) grape variety in indirect drying chamber using solar air collector with conic dimpled absorber: The case of end-season drying," Renewable Energy, Elsevier, vol. 220(C).
    5. Fuqiang Qiu & Baoguo Li & Taoping Xu & Dugui He, 2022. "Drying behavior and mathematical modeling of Tenebrio molitor using a closed system heat pump dryer [Evaluation of Tenebrio molitor larvae as an alternative food source]," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 17, pages 841-849.
    6. Deeto, S. & Thepa, S. & Monyakul, V. & Songprakorp, R., 2018. "The experimental new hybrid solar dryer and hot water storage system of thin layer coffee bean dehumidification," Renewable Energy, Elsevier, vol. 115(C), pages 954-968.
    7. Chandrasekar, M. & Senthilkumar, T. & Kumaragurubaran, B. & Fernandes, J. Peter, 2018. "Experimental investigation on a solar dryer integrated with condenser unit of split air conditioner (A/C) for enhancing drying rate," Renewable Energy, Elsevier, vol. 122(C), pages 375-381.
    8. Gómez-de la Cruz, Francisco J. & Casanova-Peláez, Pedro J. & Palomar-Carnicero, José M. & Cruz-Peragón, Fernando, 2014. "Drying kinetics of olive stone: A valuable source of biomass obtained in the olive oil extraction," Energy, Elsevier, vol. 75(C), pages 146-152.
    9. Akbulut, Abdullah & Durmuş, Aydin, 2010. "Energy and exergy analyses of thin layer drying of mulberry in a forced solar dryer," Energy, Elsevier, vol. 35(4), pages 1754-1763.
    10. Dutta, Pooja & Dutta, Partha Pratim & Kalita, Paragmoni, 2021. "Thermal performance studies for drying of Garcinia pedunculata in a free convection corrugated type of solar dryer," Renewable Energy, Elsevier, vol. 163(C), pages 599-612.
    11. Amer, Baher M.A. & Gottschalk, Klaus & Hossain, M.A., 2018. "Integrated hybrid solar drying system and its drying kinetics of chamomile," Renewable Energy, Elsevier, vol. 121(C), pages 539-547.
    12. H. Samimi. Akhijani & A. Arabhosseini & M.H. Kianmehr, 2016. "Effective moisture diffusivity during hot air solar drying of tomato slices," Research in Agricultural Engineering, Czech Academy of Agricultural Sciences, vol. 62(1), pages 15-23.
    13. Hamdi, Ilhem & Kooli, Sami & Elkhadraoui, Aymen & Azaizia, Zaineb & Abdelhamid, Fadhel & Guizani, Amenallah, 2018. "Experimental study and numerical modeling for drying grapes under solar greenhouse," Renewable Energy, Elsevier, vol. 127(C), pages 936-946.
    14. ELkhadraoui, Aymen & Kooli, Sami & Hamdi, Ilhem & Farhat, Abdelhamid, 2015. "Experimental investigation and economic evaluation of a new mixed-mode solar greenhouse dryer for drying of red pepper and grape," Renewable Energy, Elsevier, vol. 77(C), pages 1-8.
    15. Lahnine, Lamyae & Idlimam, Ali & Mostafa Mahrouz, & Mghazli, Safa & Hidar, Nadia & Hanine, Hafida & Koutit, Abbes, 2016. "Thermophysical characterization by solar convective drying of thyme conserved by an innovative thermal-biochemical process," Renewable Energy, Elsevier, vol. 94(C), pages 72-80.
    16. El Hage, Hicham & Herez, Amal & Ramadan, Mohamad & Bazzi, Hassan & Khaled, Mahmoud, 2018. "An investigation on solar drying: A review with economic and environmental assessment," Energy, Elsevier, vol. 157(C), pages 815-829.
    17. Lahsasni, Siham & Kouhila, Mohammed & Mahrouz, Mostafa & Idlimam, Ali & Jamali, Abdelkrim, 2004. "Thin layer convective solar drying and mathematical modeling of prickly pear peel (Opuntia ficus indica)," Energy, Elsevier, vol. 29(2), pages 211-224.
    18. Koua, Kamenan Blaise & Fassinou, Wanignon Ferdinand & Gbaha, Prosper & Toure, Siaka, 2009. "Mathematical modelling of the thin layer solar drying of banana, mango and cassava," Energy, Elsevier, vol. 34(10), pages 1594-1602.
    19. Mghazli, Safa & Ouhammou, Mourad & Hidar, Nadia & Lahnine, Lamyae & Idlimam, Ali & Mahrouz, Mostafa, 2017. "Drying characteristics and kinetics solar drying of Moroccan rosemary leaves," Renewable Energy, Elsevier, vol. 108(C), pages 303-310.
    20. Tugce Ozsan Kilic & Ismail Boyar & Cuneyt Dincer & Can Ertekin & Ahmet Naci Onus, 2023. "Effects of Different Osmotic Pre-Treatments on the Drying Characteristics, Modeling and Physicochemical Properties of Momordica charantia L. Slices," Agriculture, MDPI, vol. 13(10), pages 1-21, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnlrae:v:61:y:2015:i:4:id:13-2014-rae. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.