Influence of temperature on vacuum drying characteristics, functional properties and micro structure of Aloe vera (Aloe barbadensis Miller) gel
Author
Abstract
Suggested Citation
DOI: 10.17221/13/2014-RAE
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Yaldiz, Osman & Ertekin, Can & Uzun, H.Ibrahim, 2001. "Mathematical modeling of thin layer solar drying of sultana grapes," Energy, Elsevier, vol. 26(5), pages 457-465.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Annisa Kusumaningrum & Dwi Joko Prasetyo & Ervika Rahayu Novita Herawati & Asep Nurhikmat, 2019. "Modelling the drying characteristics of the traditional Indonesian crackers "kerupuk"," Research in Agricultural Engineering, Czech Academy of Agricultural Sciences, vol. 65(4), pages 137-144.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- EL-Mesery, Hany S. & EL-Seesy, Ahmed I. & Hu, Zicheng & Li, Yang, 2022. "Recent developments in solar drying technology of food and agricultural products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
- M. A. Tawfik & Khaled M. Oweda & M. K. Abd El-Wahab & W. E. Abd Allah, 2023. "A New Mode of a Natural Convection Solar Greenhouse Dryer for Domestic Usage: Performance Assessment for Grape Drying," Agriculture, MDPI, vol. 13(5), pages 1-27, May.
- Gulcimen, Fevzi & Karakaya, Hakan & Durmus, Aydın, 2016. "Drying of sweet basil with solar air collectors," Renewable Energy, Elsevier, vol. 93(C), pages 77-86.
- Çoban, Harun & Abuşka, Mesut, 2024. "Drying of Sultana seedless (Vitis vinifera L.) grape variety in indirect drying chamber using solar air collector with conic dimpled absorber: The case of end-season drying," Renewable Energy, Elsevier, vol. 220(C).
- Fuqiang Qiu & Baoguo Li & Taoping Xu & Dugui He, 2022. "Drying behavior and mathematical modeling of Tenebrio molitor using a closed system heat pump dryer [Evaluation of Tenebrio molitor larvae as an alternative food source]," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 17, pages 841-849.
- Deeto, S. & Thepa, S. & Monyakul, V. & Songprakorp, R., 2018. "The experimental new hybrid solar dryer and hot water storage system of thin layer coffee bean dehumidification," Renewable Energy, Elsevier, vol. 115(C), pages 954-968.
- Chandrasekar, M. & Senthilkumar, T. & Kumaragurubaran, B. & Fernandes, J. Peter, 2018. "Experimental investigation on a solar dryer integrated with condenser unit of split air conditioner (A/C) for enhancing drying rate," Renewable Energy, Elsevier, vol. 122(C), pages 375-381.
- Gómez-de la Cruz, Francisco J. & Casanova-Peláez, Pedro J. & Palomar-Carnicero, José M. & Cruz-Peragón, Fernando, 2014. "Drying kinetics of olive stone: A valuable source of biomass obtained in the olive oil extraction," Energy, Elsevier, vol. 75(C), pages 146-152.
- Akbulut, Abdullah & Durmuş, Aydin, 2010. "Energy and exergy analyses of thin layer drying of mulberry in a forced solar dryer," Energy, Elsevier, vol. 35(4), pages 1754-1763.
- Dutta, Pooja & Dutta, Partha Pratim & Kalita, Paragmoni, 2021. "Thermal performance studies for drying of Garcinia pedunculata in a free convection corrugated type of solar dryer," Renewable Energy, Elsevier, vol. 163(C), pages 599-612.
- Amer, Baher M.A. & Gottschalk, Klaus & Hossain, M.A., 2018. "Integrated hybrid solar drying system and its drying kinetics of chamomile," Renewable Energy, Elsevier, vol. 121(C), pages 539-547.
- H. Samimi. Akhijani & A. Arabhosseini & M.H. Kianmehr, 2016. "Effective moisture diffusivity during hot air solar drying of tomato slices," Research in Agricultural Engineering, Czech Academy of Agricultural Sciences, vol. 62(1), pages 15-23.
- Hamdi, Ilhem & Kooli, Sami & Elkhadraoui, Aymen & Azaizia, Zaineb & Abdelhamid, Fadhel & Guizani, Amenallah, 2018. "Experimental study and numerical modeling for drying grapes under solar greenhouse," Renewable Energy, Elsevier, vol. 127(C), pages 936-946.
- ELkhadraoui, Aymen & Kooli, Sami & Hamdi, Ilhem & Farhat, Abdelhamid, 2015. "Experimental investigation and economic evaluation of a new mixed-mode solar greenhouse dryer for drying of red pepper and grape," Renewable Energy, Elsevier, vol. 77(C), pages 1-8.
- Lahnine, Lamyae & Idlimam, Ali & Mostafa Mahrouz, & Mghazli, Safa & Hidar, Nadia & Hanine, Hafida & Koutit, Abbes, 2016. "Thermophysical characterization by solar convective drying of thyme conserved by an innovative thermal-biochemical process," Renewable Energy, Elsevier, vol. 94(C), pages 72-80.
- El Hage, Hicham & Herez, Amal & Ramadan, Mohamad & Bazzi, Hassan & Khaled, Mahmoud, 2018. "An investigation on solar drying: A review with economic and environmental assessment," Energy, Elsevier, vol. 157(C), pages 815-829.
- Lahsasni, Siham & Kouhila, Mohammed & Mahrouz, Mostafa & Idlimam, Ali & Jamali, Abdelkrim, 2004. "Thin layer convective solar drying and mathematical modeling of prickly pear peel (Opuntia ficus indica)," Energy, Elsevier, vol. 29(2), pages 211-224.
- Koua, Kamenan Blaise & Fassinou, Wanignon Ferdinand & Gbaha, Prosper & Toure, Siaka, 2009. "Mathematical modelling of the thin layer solar drying of banana, mango and cassava," Energy, Elsevier, vol. 34(10), pages 1594-1602.
- Mghazli, Safa & Ouhammou, Mourad & Hidar, Nadia & Lahnine, Lamyae & Idlimam, Ali & Mahrouz, Mostafa, 2017. "Drying characteristics and kinetics solar drying of Moroccan rosemary leaves," Renewable Energy, Elsevier, vol. 108(C), pages 303-310.
- Tugce Ozsan Kilic & Ismail Boyar & Cuneyt Dincer & Can Ertekin & Ahmet Naci Onus, 2023. "Effects of Different Osmotic Pre-Treatments on the Drying Characteristics, Modeling and Physicochemical Properties of Momordica charantia L. Slices," Agriculture, MDPI, vol. 13(10), pages 1-21, September.
More about this item
Keywords
therapeutic; moisture ratio; activation energy;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnlrae:v:61:y:2015:i:4:id:13-2014-rae. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.