IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i11p2778-d365732.html
   My bibliography  Save this article

Biorefining of Pigeon Pea: Residue Conversion by Pyrolysis

Author

Listed:
  • Mari Rowena C. Tanquilut

    (College of Resource Engineering, Automatization, and Mechanization (CREAM), Pampanga State Agricultural University, PAC, Magalang, 2011 Pampanga, Philippines
    Institute of Agricultural Engineering, College of Engineering and Agro-Industrial Technology (CEAT), University of the Philippines Los Baños, 4030 Laguna, Philippines)

  • Homer C. Genuino

    (Department of Chemical Engineering, Engineering and Technology Institute Groningen (ENTEG), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands)

  • Erwin Wilbers

    (Department of Chemical Engineering, Engineering and Technology Institute Groningen (ENTEG), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands)

  • Rossana Marie C. Amongo

    (Institute of Agricultural Engineering, College of Engineering and Agro-Industrial Technology (CEAT), University of the Philippines Los Baños, 4030 Laguna, Philippines)

  • Delfin C. Suministrado

    (Institute of Agricultural Engineering, College of Engineering and Agro-Industrial Technology (CEAT), University of the Philippines Los Baños, 4030 Laguna, Philippines)

  • Kevin F. Yaptenco

    (Institute of Agricultural Engineering, College of Engineering and Agro-Industrial Technology (CEAT), University of the Philippines Los Baños, 4030 Laguna, Philippines)

  • Marilyn M. Elauria

    (Department of Agricultural and Applied Economics, College of Economics and Management (CEM), University of the Philippines Los Baños, 4030 Laguna, Philippines)

  • Jessie C. Elauria

    (Institute of Agricultural Engineering, College of Engineering and Agro-Industrial Technology (CEAT), University of the Philippines Los Baños, 4030 Laguna, Philippines)

  • Hero J. Heeres

    (Department of Chemical Engineering, Engineering and Technology Institute Groningen (ENTEG), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands)

Abstract

Pyrolysis is an important technology to convert lignocellulosic biomass to a renewable liquid energy carrier known as pyrolysis oil or bio-oil. Herein we report the pyrolysis of pigeon pea wood, a widely available biomass in the Philippines, in a semi-continuous reactor at gram scale. The effects of process conditions such as temperature (400–600 °C), nitrogen flow rate (7–15 mL min −1 ) and particle size of the biomass feed (0.5–1.3 mm) on the product yields were determined. A Box-Behnken three-level, three-factor fractional factorial design was carried out to establish process-product yield relations. Of particular interest is the liquid product (bio-oil), of which the yield was shown to depend on all independent variables in a complex manner. The optimal conditions for highest bio-oil yield (54 wt.% on dry feed intake) were a temperature of 466 °C, a nitrogen flow rate of 14 mL min −1 and a particle size of 1.3 mm. Validation of the optimized conditions proved that the average ( n = 3) experimental bio-oil yield (52 wt.%) is in good agreement with the predicted value from the model. The properties of product oils were determined using various analytical techniques including gas chromatography-mass spectrometry (GC–MS), gel-permeation chromatography (GPC), nuclear magnetic resonance spectroscopy ( 13 C- and HSQC-NMR) and elemental and proximate analyses. The bio-oils were shown to have low ash content (0.2%), high heating value (29 MJ kg −1 ) and contain high value-added phenolics compounds (41%, GC peak area) as well as low molecular weight aldehydes and carboxylic acids. GPC analysis indicated the presence of a considerable amount of higher molecular weight compounds. NMR measurements showed that a large proportion of bio-oil contains aliphatic carbons (~60%), likely formed from the decomposition of (hemi)cellulose components, which are abundantly present in the starting pigeon pea wood. Subsequent preliminary scale-up pyrolysis experiments in a fluidized bed reactor (~100 g feed h −1 , 475 °C and N 2 flow rate of 1.5 L min −1 ) gave a non-optimized bio-oil yield of 44 wt.%. Further fractionation and/or processing are required to upgrade these bio-oils to biofuels and biobased chemicals.

Suggested Citation

  • Mari Rowena C. Tanquilut & Homer C. Genuino & Erwin Wilbers & Rossana Marie C. Amongo & Delfin C. Suministrado & Kevin F. Yaptenco & Marilyn M. Elauria & Jessie C. Elauria & Hero J. Heeres, 2020. "Biorefining of Pigeon Pea: Residue Conversion by Pyrolysis," Energies, MDPI, vol. 13(11), pages 1-19, June.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2778-:d:365732
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/11/2778/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/11/2778/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Prins, Mark J. & Ptasinski, Krzysztof J. & Janssen, Frans J.J.G., 2007. "From coal to biomass gasification: Comparison of thermodynamic efficiency," Energy, Elsevier, vol. 32(7), pages 1248-1259.
    2. Wang Yin & Maria V. Alekseeva (Bykova) & Robertus Hendrikus Venderbosch & Vadim A. Yakovlev & Hero Jan Heeres, 2020. "Catalytic Hydrotreatment of the Pyrolytic Sugar and Pyrolytic Lignin Fractions of Fast Pyrolysis Liquids Using Nickel Based Catalysts," Energies, MDPI, vol. 13(1), pages 1-25, January.
    3. Yildiz, Güray & Ronsse, Frederik & Duren, Ruben van & Prins, Wolter, 2016. "Challenges in the design and operation of processes for catalytic fast pyrolysis of woody biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1596-1610.
    4. Isahak, Wan Nor Roslam Wan & Hisham, Mohamed W.M. & Yarmo, Mohd Ambar & Yun Hin, Taufiq-yap, 2012. "A review on bio-oil production from biomass by using pyrolysis method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5910-5923.
    5. Dhyani, Vaibhav & Bhaskar, Thallada, 2018. "A comprehensive review on the pyrolysis of lignocellulosic biomass," Renewable Energy, Elsevier, vol. 129(PB), pages 695-716.
    6. Akhtar, Javaid & Saidina Amin, NorAishah, 2012. "A review on operating parameters for optimum liquid oil yield in biomass pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5101-5109.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Verma, Shivpal & Dregulo, Andrei Mikhailovich & Kumar, Vinay & Bhargava, Preeti Chaturvedi & Khan, Nawaz & Singh, Anuradha & Sun, Xinwei & Sindhu, Raveendran & Binod, Parameswaran & Zhang, Zengqiang &, 2023. "Reaction engineering during biomass gasification and conversion to energy," Energy, Elsevier, vol. 266(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Perkins, Greg & Bhaskar, Thallada & Konarova, Muxina, 2018. "Process development status of fast pyrolysis technologies for the manufacture of renewable transport fuels from biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 292-315.
    2. Hasan, M.M. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Jahirul, M.I., 2021. "Energy recovery from municipal solid waste using pyrolysis technology: A review on current status and developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    3. Radoslaw Slezak & Hilal Unyay & Szymon Szufa & Stanislaw Ledakowicz, 2023. "An Extensive Review and Comparison of Modern Biomass Reactors Torrefaction vs. Biomass Pyrolizers—Part 2," Energies, MDPI, vol. 16(5), pages 1-25, February.
    4. Ma, Liyang & Goldfarb, Jillian L. & Ma, Qiulin, 2022. "Enabling lower temperature pyrolysis with aqueous ionic liquid pretreatment as a sustainable approach to rice husk conversion to biofuels," Renewable Energy, Elsevier, vol. 198(C), pages 712-722.
    5. Feng, Qunjie & Lin, Yunqin, 2017. "Integrated processes of anaerobic digestion and pyrolysis for higher bioenergy recovery from lignocellulosic biomass: A brief review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1272-1287.
    6. Mishra, Ranjeet Kumar & Mohanty, Kaustubha, 2019. "Pyrolysis of three waste biomass: Effect of biomass bed thickness and distance between successive beds on pyrolytic products yield and properties," Renewable Energy, Elsevier, vol. 141(C), pages 549-558.
    7. Nanduri, Arvind & Kulkarni, Shreesh S. & Mills, Patrick L., 2021. "Experimental techniques to gain mechanistic insight into fast pyrolysis of lignocellulosic biomass: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    8. Sharifzadeh, Mahdi & Wang, Lei & Shah, Nilay, 2015. "Integrated biorefineries: CO2 utilization for maximum biomass conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 151-161.
    9. Zalazar-Garcia, Daniela & Fernandez, Anabel & Rodriguez-Ortiz, Leandro & Torres, Erick & Reyes-Urrutia, Andrés & Echegaray, Marcelo & Rodriguez, Rosa & Mazza, Germán, 2022. "Exergo-ecological analysis and life cycle assessment of agro-wastes using a combined simulation approach based on Cape-Open to Cape-Open (COCO) and SimaPro free-software," Renewable Energy, Elsevier, vol. 201(P1), pages 60-71.
    10. Wądrzyk, Mariusz & Grzywacz, Przemysław & Janus, Rafał & Michalik, Marek, 2021. "A two-stage processing of cherry pomace via hydrothermal treatment followed by biochar gasification," Renewable Energy, Elsevier, vol. 179(C), pages 248-261.
    11. Bhoi, P.R. & Ouedraogo, A.S. & Soloiu, V. & Quirino, R., 2020. "Recent advances on catalysts for improving hydrocarbon compounds in bio-oil of biomass catalytic pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    12. Sharifzadeh, M. & Wang, L. & Shah, N., 2015. "Decarbonisation of olefin processes using biomass pyrolysis oil," Applied Energy, Elsevier, vol. 149(C), pages 404-414.
    13. Goffé, Jonathan & Ferrasse, Jean-Henry, 2019. "Stoichiometry impact on the optimum efficiency of biomass conversion to biofuels," Energy, Elsevier, vol. 170(C), pages 438-458.
    14. Al-Rumaihi, Aisha & Shahbaz, Muhammad & Mckay, Gordon & Mackey, Hamish & Al-Ansari, Tareq, 2022. "A review of pyrolysis technologies and feedstock: A blending approach for plastic and biomass towards optimum biochar yield," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    15. Leng, Erwei & He, Ben & Chen, Jingwei & Liao, Gaoliang & Ma, Yinjie & Zhang, Feng & Liu, Shuai & E, Jiaqiang, 2021. "Prediction of three-phase product distribution and bio-oil heating value of biomass fast pyrolysis based on machine learning," Energy, Elsevier, vol. 236(C).
    16. Torres, Erick & Rodriguez-Ortiz, Leandro A. & Zalazar, Daniela & Echegaray, Marcelo & Rodriguez, Rosa & Zhang, Huili & Mazza, Germán, 2020. "4-E (environmental, economic, energetic and exergetic) analysis of slow pyrolysis of lignocellulosic waste," Renewable Energy, Elsevier, vol. 162(C), pages 296-307.
    17. Kabir, G. & Hameed, B.H., 2017. "Recent progress on catalytic pyrolysis of lignocellulosic biomass to high-grade bio-oil and bio-chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 945-967.
    18. Xing, Jiangkuan & Luo, Kun & Wang, Haiou & Gao, Zhengwei & Fan, Jianren, 2019. "A comprehensive study on estimating higher heating value of biomass from proximate and ultimate analysis with machine learning approaches," Energy, Elsevier, vol. 188(C).
    19. Yang, Ziqi & Wu, Yuanqing & Zhang, Zisheng & Li, Hong & Li, Xingang & Egorov, Roman I. & Strizhak, Pavel A. & Gao, Xin, 2019. "Recent advances in co-thermochemical conversions of biomass with fossil fuels focusing on the synergistic effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 384-398.
    20. Antonio Picone & Maurizio Volpe & Antonio Messineo, 2021. "Process Water Recirculation during Hydrothermal Carbonization of Waste Biomass: Current Knowledge and Challenges," Energies, MDPI, vol. 14(10), pages 1-14, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:11:p:2778-:d:365732. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.