IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v136y2019icp1091-1106.html
   My bibliography  Save this article

Diffuse fraction estimation using the BRL model and relationship of predictors under Chilean, Costa Rican and Australian climatic conditions

Author

Listed:
  • Rojas, Redlich García
  • Alvarado, Natalia
  • Boland, John
  • Escobar, Rodrigo
  • Castillejo-Cuberos, Armando

Abstract

In this paper a model is used to estimate the diffuse radiation using the Boland-Ridley-Lauret (BRL) model, which is developed for Chile, Costa Rica, and Australia. Additionally, artificial Direct Normal Irradiance time series are determined from the diffuse fraction results estimated by the model. Both estimates achieve excellent agreement based on the bias and normalized scatter. The relationship between the predictors of the model and the climatic conditions of each case of study, according to the Köppen-Geiger climatic classification was analyzed, which to the best of the authors' knowledge, it's the first study of this kind. An analysis on correlation and statistical significance was carried out between the model predictors and four determining geographic and climatic variables: altitude, latitude, precipitation and temperature. The statistical analysis shows that two of the six predictors correlate with temperature and precipitation and one predictor is correlated with latitude. Therefore, it can be suggested that the BRL model seems largely insensitive to the different regional climatic conditions, nevertheless, evaluation of the effect of the apparent correlation of the respective predictors and microclimatic and geographical variables points to further research in this area considering a wider selection of locations.

Suggested Citation

  • Rojas, Redlich García & Alvarado, Natalia & Boland, John & Escobar, Rodrigo & Castillejo-Cuberos, Armando, 2019. "Diffuse fraction estimation using the BRL model and relationship of predictors under Chilean, Costa Rican and Australian climatic conditions," Renewable Energy, Elsevier, vol. 136(C), pages 1091-1106.
  • Handle: RePEc:eee:renene:v:136:y:2019:i:c:p:1091-1106
    DOI: 10.1016/j.renene.2018.09.079
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118311534
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.09.079?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pablo Sarricolea & Mariajosé Herrera-Ossandon & Óliver Meseguer-Ruiz, 2017. "Climatic regionalisation of continental Chile," Journal of Maps, Taylor & Francis Journals, vol. 13(2), pages 66-73, November.
    2. Younes, S. & Claywell, R. & Muneer, T., 2005. "Quality control of solar radiation data: Present status and proposed new approaches," Energy, Elsevier, vol. 30(9), pages 1533-1549.
    3. Boland, John & Huang, Jing & Ridley, Barbara, 2013. "Decomposing global solar radiation into its direct and diffuse components," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 749-756.
    4. Ortega, Alberto & Escobar, Rodrigo & Colle, Sergio & de Abreu, Samuel Luna, 2010. "The state of solar energy resource assessment in Chile," Renewable Energy, Elsevier, vol. 35(11), pages 2514-2524.
    5. Pliscoff, Patricio & Luebert, Federico & Hilger, Hartmut H. & Guisan, Antoine, 2014. "Effects of alternative sets of climatic predictors on species distribution models and associated estimates of extinction risk: A test with plants in an arid environment," Ecological Modelling, Elsevier, vol. 288(C), pages 166-177.
    6. Escobar, Rodrigo A. & Cortés, Cristián & Pino, Alan & Pereira, Enio Bueno & Martins, Fernando Ramos & Cardemil, José Miguel, 2014. "Solar energy resource assessment in Chile: Satellite estimation and ground station measurements," Renewable Energy, Elsevier, vol. 71(C), pages 324-332.
    7. Lemos, Leonardo F.L. & Starke, Allan R. & Boland, John & Cardemil, José M. & Machado, Rubinei D. & Colle, Sergio, 2017. "Assessment of solar radiation components in Brazil using the BRL model," Renewable Energy, Elsevier, vol. 108(C), pages 569-580.
    8. Ridley, Barbara & Boland, John & Lauret, Philippe, 2010. "Modelling of diffuse solar fraction with multiple predictors," Renewable Energy, Elsevier, vol. 35(2), pages 478-483.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sadat, Seyyed Ali & Hoex, Bram & Pearce, Joshua M., 2022. "A Review of the Effects of Haze on Solar Photovoltaic Performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    2. Nollas, Fernando M. & Salazar, German A. & Gueymard, Christian A., 2023. "Quality control procedure for 1-minute pyranometric measurements of global and shadowband-based diffuse solar irradiance," Renewable Energy, Elsevier, vol. 202(C), pages 40-55.
    3. Castillejo-Cuberos, Armando & Escobar, Rodrigo, 2020. "Understanding solar resource variability: An in-depth analysis, using Chile as a case of study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    4. Del Hoyo, Mirko & Rondanelli, Roberto & Escobar, Rodrigo, 2020. "Significant decrease of photovoltaic power production by aerosols. The case of Santiago de Chile," Renewable Energy, Elsevier, vol. 148(C), pages 1137-1149.
    5. Mosavi, Amir & Faghan, Yaser & Ghamisi, Pedram & Duan, Puhong & Ardabili, Sina Faizollahzadeh & Hassan, Salwana & Band, Shahab S., 2020. "Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics," OSF Preprints jrc58, Center for Open Science.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Every, Jeremy P. & Li, Li & Dorrell, David G., 2020. "Köppen-Geiger climate classification adjustment of the BRL diffuse irradiation model for Australian locations," Renewable Energy, Elsevier, vol. 147(P1), pages 2453-2469.
    2. Starke, Allan R. & Lemos, Leonardo F.L. & Barni, Cristian M. & Machado, Rubinei D. & Cardemil, José M. & Boland, John & Colle, Sergio, 2021. "Assessing one-minute diffuse fraction models based on worldwide climate features," Renewable Energy, Elsevier, vol. 177(C), pages 700-714.
    3. Starke, Allan R. & Lemos, Leonardo F.L. & Boland, John & Cardemil, José M. & Colle, Sergio, 2018. "Resolution of the cloud enhancement problem for one-minute diffuse radiation prediction," Renewable Energy, Elsevier, vol. 125(C), pages 472-484.
    4. Chen, Ji-Long & He, Lei & Chen, Qiao & Lv, Ming-Quan & Zhu, Hong-Lin & Wen, Zhao-Fei & Wu, Sheng-Jun, 2019. "Study of monthly mean daily diffuse and direct beam radiation estimation with MODIS atmospheric product," Renewable Energy, Elsevier, vol. 132(C), pages 221-232.
    5. Lemos, Leonardo F.L. & Starke, Allan R. & Boland, John & Cardemil, José M. & Machado, Rubinei D. & Colle, Sergio, 2017. "Assessment of solar radiation components in Brazil using the BRL model," Renewable Energy, Elsevier, vol. 108(C), pages 569-580.
    6. Marques Filho, Edson P. & Oliveira, Amauri P. & Vita, Willian A. & Mesquita, Francisco L.L. & Codato, Georgia & Escobedo, João F. & Cassol, Mariana & França, José Ricardo A., 2016. "Global, diffuse and direct solar radiation at the surface in the city of Rio de Janeiro: Observational characterization and empirical modeling," Renewable Energy, Elsevier, vol. 91(C), pages 64-74.
    7. Liu, Peirong & Tong, Xiaojuan & Zhang, Jinsong & Meng, Ping & Li, Jun & Zhang, Jingru, 2020. "Estimation of half-hourly diffuse solar radiation over a mixed plantation in north China," Renewable Energy, Elsevier, vol. 149(C), pages 1360-1369.
    8. Das, Aparna & Paul, Saikat Kumar, 2015. "Artificial illumination during daytime in residential buildings: Factors, energy implications and future predictions," Applied Energy, Elsevier, vol. 158(C), pages 65-85.
    9. Yang, Dazhi & Gu, Yizhan & Mayer, Martin János & Gueymard, Christian A. & Wang, Wenting & Kleissl, Jan & Li, Mengying & Chu, Yinghao & Bright, Jamie M., 2024. "Regime-dependent 1-min irradiance separation model with climatology clustering," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    10. Wang, Hong & Sun, Fubao & Wang, Tingting & Liu, Wenbin, 2018. "Estimation of daily and monthly diffuse radiation from measurements of global solar radiation a case study across China," Renewable Energy, Elsevier, vol. 126(C), pages 226-241.
    11. Manuschevich, Daniela & Sarricolea, Pablo & Galleguillos, Mauricio, 2019. "Integrating socio-ecological dynamics into land use policy outcomes: A spatial scenario approach for native forest conservation in south-central Chile," Land Use Policy, Elsevier, vol. 84(C), pages 31-42.
    12. Viviana Tudela & Pablo Sarricolea & Roberto Serrano-Notivoli & Oliver Meseguer-Ruiz, 2023. "A pilot study for climate risk assessment in agriculture: a climate-based index for cherry trees," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(1), pages 163-185, January.
    13. Lou, Siwei & Li, Danny H.W. & Lam, Joseph C. & Chan, Wilco W.H., 2016. "Prediction of diffuse solar irradiance using machine learning and multivariable regression," Applied Energy, Elsevier, vol. 181(C), pages 367-374.
    14. Oh, Myeongchan & Kim, Chang Ki & Kim, Boyoung & Yun, Changyeol & Kim, Jin-Young & Kang, Yongheack & Kim, Hyun-Goo, 2022. "Analysis of minute-scale variability for enhanced separation of direct and diffuse solar irradiance components using machine learning algorithms," Energy, Elsevier, vol. 241(C).
    15. Cornejo, Lorena & Martín-Pomares, Luis & Alarcon, Diego & Blanco, Julián & Polo, Jesús, 2017. "A through analysis of solar irradiation measurements in the region of Arica Parinacota, Chile," Renewable Energy, Elsevier, vol. 112(C), pages 197-208.
    16. Castillejo-Cuberos, Armando & Escobar, Rodrigo, 2020. "Understanding solar resource variability: An in-depth analysis, using Chile as a case of study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    17. Nollas, Fernando M. & Salazar, German A. & Gueymard, Christian A., 2023. "Quality control procedure for 1-minute pyranometric measurements of global and shadowband-based diffuse solar irradiance," Renewable Energy, Elsevier, vol. 202(C), pages 40-55.
    18. Román-Collado, Rocío & Ordoñez, Manuel & Mundaca, Luis, 2018. "Has electricity turned green or black in Chile? A structural decomposition analysis of energy consumption," Energy, Elsevier, vol. 162(C), pages 282-298.
    19. Parrado, C. & Marzo, A. & Fuentealba, E. & Fernández, A.G., 2016. "2050 LCOE improvement using new molten salts for thermal energy storage in CSP plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 505-514.
    20. Jamil, Basharat & Akhtar, Naiem, 2017. "Comparative analysis of diffuse solar radiation models based on sky-clearness index and sunshine period for humid-subtropical climatic region of India: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 329-355.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:136:y:2019:i:c:p:1091-1106. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.