IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v135y2019icp554-565.html
   My bibliography  Save this article

Production of rice husk bio-oil and comprehensive characterization (qualitative and quantitative) by HPLC/PDA and GC × GC/qMS

Author

Listed:
  • Lazzari, Eliane
  • Polidoro, Allan dos Santos
  • Onorevoli, Bruna
  • Schena, Tiago
  • Silva, Aline Nunes
  • Scapin, Enelise
  • Jacques, Rosangela Assis
  • Caramão, Elina Bastos

Abstract

Pyrolysis of rice husk (RH) is an efficient process for the transformation of biomass to bio-oil (high-added value product). Bio-oil consists of two immiscible phases (organic and aqueous) both with potential for the generation of important chemicals for the industry. The aim of this study was to produce bio-oil by pyrolysis of RH and elucidate its chemical composition. Response surface methodology (RSM) was successfully used to determine the optimal pyrolysis conditions for the RH dry bio-oil production using central composite design (CCD). Temperature and flow rate significantly affected the bio-oil production and higher dry bio-oil yield was achieved at 650 °C and N2 flow rate of 100 mL min−1 (predicted values of 16.9%). High performance liquid chromatography with photodiode array detection (HPLC/PDA) and comprehensive two-dimensional gas chromatography with quadrupole mass spectrometry detection (GC × GC/qMS) were used to provide a comprehensive characterization (qualitative and quantitative) of both phases from RH bio-oil. Through GC × GC/qMS analysis a total number of 98 compounds were found in organic phase; from these, 62 were quantified using a developed quantitative method by relative response factors (RRFs). Phenols and ketones (cyclic ketones) were majority in the organic phase, 8.21 and 5.90 wt%, respectively, and the benzofuran (1.37 wt%) corresponds to the major identified compound. HPLC/PDA analysis evidenced a high concentration of benzenediols and furfurals in the aqueous phase. Catechol was the major compound (2063 mg L−1) followed by furfural (997 mg L−1) and hydroquinone (899 mg L−1). This is the first time that GC × GC/qMS and HPLC/PDA has been used to characterize (qualitatively and quantitatively) both phases from RH bio-oil which showed potential use as a source of high-added value chemicals.

Suggested Citation

  • Lazzari, Eliane & Polidoro, Allan dos Santos & Onorevoli, Bruna & Schena, Tiago & Silva, Aline Nunes & Scapin, Enelise & Jacques, Rosangela Assis & Caramão, Elina Bastos, 2019. "Production of rice husk bio-oil and comprehensive characterization (qualitative and quantitative) by HPLC/PDA and GC × GC/qMS," Renewable Energy, Elsevier, vol. 135(C), pages 554-565.
  • Handle: RePEc:eee:renene:v:135:y:2019:i:c:p:554-565
    DOI: 10.1016/j.renene.2018.12.053
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118314848
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.12.053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohammad I. Jahirul & Mohammad G. Rasul & Ashfaque Ahmed Chowdhury & Nanjappa Ashwath, 2012. "Biofuels Production through Biomass Pyrolysis —A Technological Review," Energies, MDPI, vol. 5(12), pages 1-50, November.
    2. Effendi, A. & Gerhauser, H. & Bridgwater, A.V., 2008. "Production of renewable phenolic resins by thermochemical conversion of biomass: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(8), pages 2092-2116, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aboagye, D. & Banadda, N. & Kiggundu, N. & Kabenge, I., 2017. "Assessment of orange peel waste availability in ghana and potential bio-oil yield using fast pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 814-821.
    2. Nabavi-Pelesaraei, Ashkan & Azadi, Hossein & Van Passel, Steven & Saber, Zahra & Hosseini-Fashami, Fatemeh & Mostashari-Rad, Fatemeh & Ghasemi-Mobtaker, Hassan, 2021. "Prospects of solar systems in production chain of sunflower oil using cold press method with concentrating energy and life cycle assessment," Energy, Elsevier, vol. 223(C).
    3. Elhambakhsh, Abbas & Van Duc Long, Nguyen & Lamichhane, Pradeep & Hessel, Volker, 2023. "Recent progress and future directions in plasma-assisted biomass conversion to hydrogen," Renewable Energy, Elsevier, vol. 218(C).
    4. Taghizadeh-Alisaraei, Ahmad & Assar, Hossein Alizadeh & Ghobadian, Barat & Motevali, Ali, 2017. "Potential of biofuel production from pistachio waste in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 510-522.
    5. Kumar N, Sasi & Grekov, Denys & Pré, Pascaline & Alappat, Babu J., 2020. "Microwave mode of heating in the preparation of porous carbon materials for adsorption and energy storage applications – An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    6. R. Kizza & N. Banadda & I. Kabenge & J. Seay & S. Willet & N. Kiggundu & A. Zziwa, 2024. "Pyrolysis of Wood Residues in a Cylindrical Batch Reactor: Effect of Operating Parameters on the Quality and Yield of Products," Journal of Sustainable Development, Canadian Center of Science and Education, vol. 12(5), pages 112-112, July.
    7. Neves, Renato Cruz & Klein, Bruno Colling & da Silva, Ricardo Justino & Rezende, Mylene Cristina Alves Ferreira & Funke, Axel & Olivarez-Gómez, Edgardo & Bonomi, Antonio & Maciel-Filho, Rubens, 2020. "A vision on biomass-to-liquids (BTL) thermochemical routes in integrated sugarcane biorefineries for biojet fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    8. Jouhara, H. & Nannou, T.K. & Anguilano, L. & Ghazal, H. & Spencer, N., 2017. "Heat pipe based municipal waste treatment unit for home energy recovery," Energy, Elsevier, vol. 139(C), pages 1210-1230.
    9. M. N. Uddin & Kuaanan Techato & Juntakan Taweekun & Md Mofijur Rahman & M. G. Rasul & T. M. I. Mahlia & S. M. Ashrafur, 2018. "An Overview of Recent Developments in Biomass Pyrolysis Technologies," Energies, MDPI, vol. 11(11), pages 1-24, November.
    10. Workson Siwale & Stefan Frodeson & Michael Finell & Mehrdad Arshadi & Carina Jonsson & Gunnar Henriksson & Jonas Berghel, 2022. "Understanding Off-Gassing of Biofuel Wood Pellets Using Pellets Produced from Pure Microcrystalline Cellulose with Different Additive Oils," Energies, MDPI, vol. 15(6), pages 1-12, March.
    11. Sánchez, M. & Clifford, B. & Nixon, J.D., 2018. "Modelling and evaluating a solar pyrolysis system," Renewable Energy, Elsevier, vol. 116(PA), pages 630-638.
    12. Andrade Díaz, Christhel & Albers, Ariane & Zamora-Ledezma, Ezequiel & Hamelin, Lorie, 2024. "The interplay between bioeconomy and the maintenance of long-term soil organic carbon stock in agricultural soils: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    13. Farhad Beik & Leon Williams & Tim Brown & Stuart T. Wagland, 2021. "Managing Non-Sewered Human Waste Using Thermochemical Waste Treatment Technologies: A Review," Energies, MDPI, vol. 14(22), pages 1-22, November.
    14. Amutio, M. & Lopez, G. & Artetxe, M. & Elordi, G. & Olazar, M. & Bilbao, J., 2012. "Influence of temperature on biomass pyrolysis in a conical spouted bed reactor," Resources, Conservation & Recycling, Elsevier, vol. 59(C), pages 23-31.
    15. Juan Luis Aguirre & Juan Baena & María Teresa Martín & Leonor Nozal & Sergio González & José Luis Manjón & Manuel Peinado, 2020. "Composition, Ageing and Herbicidal Properties of Wood Vinegar Obtained through Fast Biomass Pyrolysis," Energies, MDPI, vol. 13(10), pages 1-17, May.
    16. Savvas L. Douvartzides & Nikolaos D. Charisiou & Kyriakos N. Papageridis & Maria A. Goula, 2019. "Green Diesel: Biomass Feedstocks, Production Technologies, Catalytic Research, Fuel Properties and Performance in Compression Ignition Internal Combustion Engines," Energies, MDPI, vol. 12(5), pages 1-41, February.
    17. Campuzano, Felipe & Brown, Robert C. & Martínez, Juan Daniel, 2019. "Auger reactors for pyrolysis of biomass and wastes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 372-409.
    18. Dessbesell, Luana & Paleologou, Michael & Leitch, Mathew & Pulkki, Reino & Xu, Chunbao (Charles), 2020. "Global lignin supply overview and kraft lignin potential as an alternative for petroleum-based polymers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    19. Grzegorz Maj, 2018. "Emission Factors and Energy Properties of Agro and Forest Biomass in Aspect of Sustainability of Energy Sector," Energies, MDPI, vol. 11(6), pages 1-12, June.
    20. Kasmuri, N.H. & Kamarudin, S.K. & Abdullah, S.R.S. & Hasan, H.A. & Som, A.Md., 2017. "Process system engineering aspect of bio-alcohol fuel production from biomass via pyrolysis: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 914-923.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:135:y:2019:i:c:p:554-565. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.