IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v134y2019icp961-969.html
   My bibliography  Save this article

Theoretical performance estimation of shrouded-twin-rotor wind turbines using the actuator disk theory

Author

Listed:
  • Kumar, Vedant
  • Saha, Sandeep

Abstract

Wind energy is anticipated to play a vital role to fulfill the worldwide energy requirements, whereas existing bare wind turbines can convert only a fraction of flow energy into electricity. To bridge the gap between the escalating demand and the generation capability, we propose a shrouded-twin-rotor turbine design, whose power coefficient exceeds the Betz-Joukowsky limit. We analyze the flow through the wind turbine assembly, using the actuator disk theory, and estimate the power output for a pair of rotor-loading coefficients. We find the existence of two regimes in which the proposed design performs better than the single-rotor configuration: (a) a turbine-turbine mode where both rotors work as turbines and (b) a turbine-fan mode where one rotor is a turbine while the other is a fan- an idea proposed by Betz (A. Betz, Wind-Energie und ihre Ausnutzung durch Windmühlen, Vandenhoeck, 1926). Both modes enable achieving maximum power for multiple combinations of the loading coefficient pair. Moreover, power output depends solely on a single parameter, defined using the area weighted sum of the loading coefficients. We derive the optimum performance criterion and present the effects of the shroud geometry, back pressure, and flow-efficiency parameters on the power output and the performance envelope.

Suggested Citation

  • Kumar, Vedant & Saha, Sandeep, 2019. "Theoretical performance estimation of shrouded-twin-rotor wind turbines using the actuator disk theory," Renewable Energy, Elsevier, vol. 134(C), pages 961-969.
  • Handle: RePEc:eee:renene:v:134:y:2019:i:c:p:961-969
    DOI: 10.1016/j.renene.2018.11.077
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014811831396X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.11.077?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sorribes-Palmer, F. & Sanz-Andres, A. & Ayuso, L. & Sant, R. & Franchini, S., 2017. "Mixed CFD-1D wind turbine diffuser design optimization," Renewable Energy, Elsevier, vol. 105(C), pages 386-399.
    2. Lee, Seungmin & Son, Eunkuk & Lee, Soogab, 2013. "Velocity interference in the rear rotor of a counter-rotating wind turbine," Renewable Energy, Elsevier, vol. 54(C), pages 235-240.
    3. Bet, F & Grassmann, H, 2003. "Upgrading conventional wind turbines," Renewable Energy, Elsevier, vol. 28(1), pages 71-78.
    4. Kosasih, B. & Saleh Hudin, H., 2016. "Influence of inflow turbulence intensity on the performance of bare and diffuser-augmented micro wind turbine model," Renewable Energy, Elsevier, vol. 87(P1), pages 154-167.
    5. Jung, Sung Nam & No, Tae-Soo & Ryu, Ki-Wahn, 2005. "Aerodynamic performance prediction of a 30kW counter-rotating wind turbine system," Renewable Energy, Elsevier, vol. 30(5), pages 631-644.
    6. Tariq Abdulsalam Khamlaj & Markus Peer Rumpfkeil, 2017. "Theoretical Analysis of Shrouded Horizontal Axis Wind Turbines," Energies, MDPI, vol. 10(1), pages 1-19, January.
    7. Aranake, Aniket C. & Lakshminarayan, Vinod K. & Duraisamy, Karthik, 2015. "Computational analysis of shrouded wind turbine configurations using a 3-dimensional RANS solver," Renewable Energy, Elsevier, vol. 75(C), pages 818-832.
    8. Khamlaj, Tariq Abdulsalam & Rumpfkeil, Markus Peer, 2018. "Analysis and optimization of ducted wind turbines," Energy, Elsevier, vol. 162(C), pages 1234-1252.
    9. Lee, Seungmin & Kim, Hogeon & Son, Eunkuk & Lee, Soogab, 2012. "Effects of design parameters on aerodynamic performance of a counter-rotating wind turbine," Renewable Energy, Elsevier, vol. 42(C), pages 140-144.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nunes, Matheus M. & Brasil Junior, Antonio C.P. & Oliveira, Taygoara F., 2020. "Systematic review of diffuser-augmented horizontal-axis turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    2. Anbarsooz, M. & Amiri, M., 2022. "Towards enhancing the wind energy potential at the built environment: Geometry effects of two adjacent buildings," Energy, Elsevier, vol. 239(PD).
    3. Yaru Yang & Hua Li & Jin Yao & Wenxiang Gao & Haiyan Peng, 2019. "Analysis on the Force and Life of Gearbox in Double-Rotor Wind Turbine," Energies, MDPI, vol. 12(21), pages 1-19, November.
    4. Bontempo, R. & Manna, M., 2020. "Diffuser augmented wind turbines: Review and assessment of theoretical models," Applied Energy, Elsevier, vol. 280(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rahmatian, Mohammad Ali & Hashemi Tari, Pooyan & Mojaddam, Mohammad & Majidi, Sahand, 2022. "Numerical and experimental study of the ducted diffuser effect on improving the aerodynamic performance of a micro horizontal axis wind turbine," Energy, Elsevier, vol. 245(C).
    2. Keramat Siavash, Nemat & Najafi, G. & Tavakkoli Hashjin, Teymour & Ghobadian, Barat & Mahmoodi, Esmail, 2020. "Mathematical modeling of a horizontal axis shrouded wind turbine," Renewable Energy, Elsevier, vol. 146(C), pages 856-866.
    3. Leloudas, Stavros N. & Lygidakis, Georgios N. & Eskantar, Alexandros I. & Nikolos, Ioannis K., 2020. "A robust methodology for the design optimization of diffuser augmented wind turbine shrouds," Renewable Energy, Elsevier, vol. 150(C), pages 722-742.
    4. Nunes, Matheus M. & Brasil Junior, Antonio C.P. & Oliveira, Taygoara F., 2020. "Systematic review of diffuser-augmented horizontal-axis turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    5. Ali, Qazi Shahzad & Kim, Man-Hoe, 2022. "Power conversion performance of airborne wind turbine under unsteady loads," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    6. Sridhar, Surya & Zuber, Mohammad & B., Satish Shenoy & Kumar, Amit & Ng, Eddie Y.K. & Radhakrishnan, Jayakrishnan, 2022. "Aerodynamic comparison of slotted and non-slotted diffuser casings for Diffuser Augmented Wind Turbines (DAWT)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    7. Bontempo, R. & Manna, M., 2020. "Diffuser augmented wind turbines: Review and assessment of theoretical models," Applied Energy, Elsevier, vol. 280(C).
    8. Cai, Wei & Hu, Yang & Wang, Haonan & Yao, Lujin & Guo, Xiaojiang & Liu, Jizhen, 2024. "Cross-coupling control design of a flexible dual rotor wind turbine with enhanced wind energy capture capacity," Renewable Energy, Elsevier, vol. 220(C).
    9. Kuang, Limin & Su, Jie & Chen, Yaoran & Han, Zhaolong & Zhou, Dai & Zhang, Kai & Zhao, Yongsheng & Bao, Yan, 2022. "Wind-capture-accelerate device for performance improvement of vertical-axis wind turbines: External diffuser system," Energy, Elsevier, vol. 239(PB).
    10. Michał Pacholczyk & Dariusz Karkosiński, 2020. "Parametric Study on a Performance of a Small Counter-Rotating Wind Turbine," Energies, MDPI, vol. 13(15), pages 1-17, July.
    11. Saleem, Arslan & Kim, Man-Hoe, 2020. "Aerodynamic performance optimization of an airfoil-based airborne wind turbine using genetic algorithm," Energy, Elsevier, vol. 203(C).
    12. Han, Wanlong & Yan, Peigang & Han, Wanjin & He, Yurong, 2015. "Design of wind turbines with shroud and lobed ejectors for efficient utilization of low-grade wind energy," Energy, Elsevier, vol. 89(C), pages 687-701.
    13. Khamlaj, Tariq Abdulsalam & Rumpfkeil, Markus Peer, 2018. "Analysis and optimization of ducted wind turbines," Energy, Elsevier, vol. 162(C), pages 1234-1252.
    14. Didane, Djamal Hissein & Rosly, Nurhayati & Zulkafli, Mohd Fadhli & Shamsudin, Syariful Syafiq, 2018. "Performance evaluation of a novel vertical axis wind turbine with coaxial contra-rotating concept," Renewable Energy, Elsevier, vol. 115(C), pages 353-361.
    15. Dogru, Safak & Yilmaz, Oktay, 2024. "Extensive design and aerodynamic performance investigation of diffuser augmented wind turbine (DAWT) guided by generalized actuator disc theory," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    16. Zhao, Xu & Zhou, Ping & Liang, Xiao & Gao, Shen, 2020. "The aerodynamic coupling design and wind tunnel test of contra-rotating wind turbines," Renewable Energy, Elsevier, vol. 146(C), pages 1-8.
    17. Mann, Harjeet S. & Singh, Pradeep K., 2020. "Energy recovery ducted turbine (ERDT) system for chimney flue gases - A CFD based analysis to study the effect of number of blade and diffuser angle," Energy, Elsevier, vol. 213(C).
    18. Radu Saulescu & Mircea Neagoe & Codruta Jaliu, 2018. "Conceptual Synthesis of Speed Increasers for Wind Turbine Conversion Systems," Energies, MDPI, vol. 11(9), pages 1-33, August.
    19. Kaseb, Z. & Montazeri, H., 2022. "Data-driven optimization of building-integrated ducted openings for wind energy harvesting: Sensitivity analysis of metamodels," Energy, Elsevier, vol. 258(C).
    20. Vaz, Jerson R.P. & Wood, David H., 2018. "Effect of the diffuser efficiency on wind turbine performance," Renewable Energy, Elsevier, vol. 126(C), pages 969-977.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:134:y:2019:i:c:p:961-969. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.