IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v220y2024ics0960148123015446.html
   My bibliography  Save this article

Cross-coupling control design of a flexible dual rotor wind turbine with enhanced wind energy capture capacity

Author

Listed:
  • Cai, Wei
  • Hu, Yang
  • Wang, Haonan
  • Yao, Lujin
  • Guo, Xiaojiang
  • Liu, Jizhen

Abstract

In order to improve the reliability of wind turbine grid connection and reduce the cost of wind power generation, this paper studies a counter-rotating dual rotor wind turbine (DRWT) which consists of decoupled driven-train subsystems, a triple-terminal converter and a dual rotor generator. For this new-type wind energy conversion system, its modeling and control strategy need to be studied. Firstly, mechanism model of the DRWT with a new structure is constructed. By investigating the effects of pitch angles and rotor speeds on output power, respectively, the maximum power output condition of the DRWT is obtained. Considering the overall energy conversion efficiency and mechanical load constraints, the optimal regime of the DRWT is established. Based on the optimal torque algorithm and cross-coupling control strategy, this paper presents a novel cross-coupling control strategy for the DRWT to track maximum power. The proposed strategy can regulate the rotor speed of the front and rear rotors, enabling DRWT to operate on the optimal speed combination curve. Finally, the hardware-in-the-loop experiment is built to test the performance of the proposed strategy under various wind conditions. The simulation results verify that the proposed strategy can improve power generation, and analysis shows that the proposed strategy fundamentally alters the energy capture ratio between the front and rear wind turbines to optimize total output power.

Suggested Citation

  • Cai, Wei & Hu, Yang & Wang, Haonan & Yao, Lujin & Guo, Xiaojiang & Liu, Jizhen, 2024. "Cross-coupling control design of a flexible dual rotor wind turbine with enhanced wind energy capture capacity," Renewable Energy, Elsevier, vol. 220(C).
  • Handle: RePEc:eee:renene:v:220:y:2024:i:c:s0960148123015446
    DOI: 10.1016/j.renene.2023.119629
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123015446
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119629?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kumar, Dipesh & Chatterjee, Kalyan, 2016. "A review of conventional and advanced MPPT algorithms for wind energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 957-970.
    2. No, T.S. & Kim, J.-E. & Moon, J.H. & Kim, S.J., 2009. "Modeling, control, and simulation of dual rotor wind turbine generator system," Renewable Energy, Elsevier, vol. 34(10), pages 2124-2132.
    3. Tabassum-Abbasi, & Premalatha, M. & Abbasi, Tasneem & Abbasi, S.A., 2014. "Wind energy: Increasing deployment, rising environmental concerns," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 270-288.
    4. Jung, Sung Nam & No, Tae-Soo & Ryu, Ki-Wahn, 2005. "Aerodynamic performance prediction of a 30kW counter-rotating wind turbine system," Renewable Energy, Elsevier, vol. 30(5), pages 631-644.
    5. Cho, Whang & Lee, Kooksun & Choy, Ick & Back, Juhoon, 2017. "Development and experimental verification of counter-rotating dual rotor/dual generator wind turbine: Generating, yawing and furling," Renewable Energy, Elsevier, vol. 114(PB), pages 644-654.
    6. Zhiqiang, Li & Yunke, Wu & Jie, Hong & Zhihong, Zhang & Wenqi, Chen, 2018. "The study on performance and aerodynamics of micro counter-rotating HAWT," Energy, Elsevier, vol. 161(C), pages 939-954.
    7. Lee, Seungmin & Kim, Hogeon & Son, Eunkuk & Lee, Soogab, 2012. "Effects of design parameters on aerodynamic performance of a counter-rotating wind turbine," Renewable Energy, Elsevier, vol. 42(C), pages 140-144.
    8. Wang, Zhenyu & Ozbay, Ahmet & Tian, Wei & Hu, Hui, 2018. "An experimental study on the aerodynamic performances and wake characteristics of an innovative dual-rotor wind turbine," Energy, Elsevier, vol. 147(C), pages 94-109.
    9. Lee, Seungmin & Son, Eunkuk & Lee, Soogab, 2013. "Velocity interference in the rear rotor of a counter-rotating wind turbine," Renewable Energy, Elsevier, vol. 54(C), pages 235-240.
    10. Farahani, E.M. & Hosseinzadeh, N. & Ektesabi, M., 2012. "Comparison of fault-ride-through capability of dual and single-rotor wind turbines," Renewable Energy, Elsevier, vol. 48(C), pages 473-481.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Yaru & Li, Hua & Yao, Jin & Gao, Wenxiang, 2019. "Research on the characteristic parameters and rotor layout principle of dual-rotor horizontal axis wind turbine," Energy, Elsevier, vol. 189(C).
    2. Mircea Neagoe & Radu Saulescu & Codruta Jaliu, 2019. "Design and Simulation of a 1 DOF Planetary Speed Increaser for Counter-Rotating Wind Turbines with Counter-Rotating Electric Generators," Energies, MDPI, vol. 12(9), pages 1-19, May.
    3. Radu Saulescu & Mircea Neagoe & Codruta Jaliu, 2018. "Conceptual Synthesis of Speed Increasers for Wind Turbine Conversion Systems," Energies, MDPI, vol. 11(9), pages 1-33, August.
    4. Mircea Neagoe & Radu Saulescu & Codruta Jaliu & Petru A. Simionescu, 2020. "A Generalized Approach to the Steady-State Efficiency Analysis of Torque-Adding Transmissions Used in Renewable Energy Systems," Energies, MDPI, vol. 13(17), pages 1-18, September.
    5. Kumar, Vedant & Saha, Sandeep, 2019. "Theoretical performance estimation of shrouded-twin-rotor wind turbines using the actuator disk theory," Renewable Energy, Elsevier, vol. 134(C), pages 961-969.
    6. Michał Pacholczyk & Dariusz Karkosiński, 2020. "Parametric Study on a Performance of a Small Counter-Rotating Wind Turbine," Energies, MDPI, vol. 13(15), pages 1-17, July.
    7. Han, Wanlong & Yan, Peigang & Han, Wanjin & He, Yurong, 2015. "Design of wind turbines with shroud and lobed ejectors for efficient utilization of low-grade wind energy," Energy, Elsevier, vol. 89(C), pages 687-701.
    8. Didane, Djamal Hissein & Rosly, Nurhayati & Zulkafli, Mohd Fadhli & Shamsudin, Syariful Syafiq, 2018. "Performance evaluation of a novel vertical axis wind turbine with coaxial contra-rotating concept," Renewable Energy, Elsevier, vol. 115(C), pages 353-361.
    9. Farahani, E.M. & Hosseinzadeh, N. & Ektesabi, M., 2012. "Comparison of fault-ride-through capability of dual and single-rotor wind turbines," Renewable Energy, Elsevier, vol. 48(C), pages 473-481.
    10. Zhiqiang, Li & Yunke, Wu & Jie, Hong & Zhihong, Zhang & Wenqi, Chen, 2018. "The study on performance and aerodynamics of micro counter-rotating HAWT," Energy, Elsevier, vol. 161(C), pages 939-954.
    11. Dang Huy Le & The Bao Nguyen & Van Minh Ngo, 2023. "Experimental Performance of a Novel Dual−Stage Counter−Rotating Small Wind Turbine and Forming a Validatable CFD Computational Model," Energies, MDPI, vol. 16(14), pages 1-21, July.
    12. Zhao, Xu & Zhou, Ping & Liang, Xiao & Gao, Shen, 2020. "The aerodynamic coupling design and wind tunnel test of contra-rotating wind turbines," Renewable Energy, Elsevier, vol. 146(C), pages 1-8.
    13. Schumacher, Kim & Yang, Zhuoxiang, 2018. "The determinants of wind energy growth in the United States: Drivers and barriers to state-level development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 1-13.
    14. Jing Xu & Ren Zhang & Yangjun Wang & Hengqian Yan & Quanhong Liu & Yutong Guo & Yongcun Ren, 2022. "A New Framework for Assessment of Offshore Wind Farm Location," Energies, MDPI, vol. 15(18), pages 1-17, September.
    15. Ilkiliç, Cumali & Aydin, Hüseyin, 2015. "Wind power potential and usage in the coastal regions of Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 78-86.
    16. Moravec, David & Barták, Vojtěch & Puš, Vladimír & Wild, Jan, 2018. "Wind turbine impact on near-ground air temperature," Renewable Energy, Elsevier, vol. 123(C), pages 627-633.
    17. Ali Fayazi & Hossein Ghayoumi Zadeh & Hossein Ahmadian & Mahdi Ghane & Omid Rahmani Seryasat, 2024. "Pitch Actuator Fault-Tolerant Control of Wind Turbines via an L 1 Adaptive Sliding Mode Control ( SMC ) Scheme," Energies, MDPI, vol. 17(16), pages 1-20, August.
    18. Azizi, Askar & Nourisola, Hamid & Shoja-Majidabad, Sajjad, 2019. "Fault tolerant control of wind turbines with an adaptive output feedback sliding mode controller," Renewable Energy, Elsevier, vol. 135(C), pages 55-65.
    19. Arshdeep Singh & Shimi Sudha Letha, 2019. "Emerging energy sources for electric vehicle charging station," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(5), pages 2043-2082, October.
    20. Tai Li & Yanbo Wang & Sunan Sun & Huimin Qian & Leqiu Wang & Lei Wang & Yanxia Shen & Zhicheng Ji, 2023. "Fuzzy Active Disturbance Rejection-Based Virtual Inertia Control Strategy for Wind Farms," Energies, MDPI, vol. 16(10), pages 1-16, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:220:y:2024:i:c:s0960148123015446. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.