IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v134y2019icp247-257.html
   My bibliography  Save this article

One-Sun CPC-type solar collectors with evacuated tubular receivers

Author

Listed:
  • Osório, T.
  • Horta, P.
  • Marchã, J.
  • Collares-Pereira, M.

Abstract

The collection of solar energy in the upper part (80–150 °C) of the low temperature range commonly relies on evacuated tubular collectors with or without a back reflector. The reflector is usually of the CPC type and designed for a collector concentration ratio below 1. Increasing the concentration ratio lowers thermal loss while limiting the collector acceptance angle. A hemispherical acceptance makes the installation fully flexible, i.e. the collectors can be installed on surfaces with any tilt, and both in North-South or East-West tube orientations. If a hemispheric acceptance is intended, the theoretical upper limit of the concentration ratio is exactly 1. We investigated near-one-concentration (One-Sun) CPC-type solar collectors with different virtual absorber geometries for the same evacuated tubular receiver to identify designs with low materials and manufacturing production costs. We compared four different designs and built a prototype of the most promising one. Experimental tests showed an increase of 79 °C in the receiver stagnation temperature, albeit a poor reflector shape quality. We present some ideas on how to deal with the difficult subject of overheating that would lead to a reduction of up to 36% in the zero-loss efficiency at normal incidence for the selected design.

Suggested Citation

  • Osório, T. & Horta, P. & Marchã, J. & Collares-Pereira, M., 2019. "One-Sun CPC-type solar collectors with evacuated tubular receivers," Renewable Energy, Elsevier, vol. 134(C), pages 247-257.
  • Handle: RePEc:eee:renene:v:134:y:2019:i:c:p:247-257
    DOI: 10.1016/j.renene.2018.11.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118313363
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.11.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Widyolar, Bennett & Jiang, Lun & Ferry, Jonathan & Winston, Roland, 2018. "Non-tracking East-West XCPC solar thermal collector for 200 celsius applications," Applied Energy, Elsevier, vol. 216(C), pages 521-533.
    2. Kim, Yong Sin & Balkoski, Kevin & Jiang, Lun & Winston, Roland, 2013. "Efficient stationary solar thermal collector systems operating at a medium-temperature range," Applied Energy, Elsevier, vol. 111(C), pages 1071-1079.
    3. Milani, Dia & Abbas, Ali, 2016. "Multiscale modeling and performance analysis of evacuated tube collectors for solar water heaters using diffuse flat reflector," Renewable Energy, Elsevier, vol. 86(C), pages 360-374.
    4. Sabiha, M.A. & Saidur, R. & Mekhilef, Saad & Mahian, Omid, 2015. "Progress and latest developments of evacuated tube solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1038-1054.
    5. Madala, Srikanth & Boehm, Robert F., 2017. "A review of nonimaging solar concentrators for stationary and passive tracking applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 309-322.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Korres, Dimitrios N. & Tzivanidis, Christos, 2022. "A novel asymmetric compound parabolic collector under experimental and numerical investigation," Renewable Energy, Elsevier, vol. 199(C), pages 1580-1592.
    2. Zhang, Xueyan & Zhang, Youyang & Zheng, Canyang & Chen, Fei, 2023. "Model construction and performance investigation of compound parabolic concentrator based on satellite solar wing photovoltaic arrays," Energy, Elsevier, vol. 285(C).
    3. Xia, En-Tong & Chen, Fei, 2020. "Analyzing thermal properties of solar evacuated tube arrays coupled with mini-compound parabolic concentrator," Renewable Energy, Elsevier, vol. 153(C), pages 155-167.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Javed Akhter & Syed I. Gilani & Hussain H. Al-Kayiem & Muzaffar Ali, 2019. "Optical Performance Analysis of Single Flow Through and Concentric Tube Receiver Coupled with a Modified CPC Collector Under Different Configurations," Energies, MDPI, vol. 12(21), pages 1-24, October.
    2. Xia, En-Tong & Chen, Fei, 2020. "Analyzing thermal properties of solar evacuated tube arrays coupled with mini-compound parabolic concentrator," Renewable Energy, Elsevier, vol. 153(C), pages 155-167.
    3. Walmsley, Timothy Gordon & Philipp, Matthias & Picón-Núñez, Martín & Meschede, Henning & Taylor, Matthew Thomas & Schlosser, Florian & Atkins, Martin John, 2023. "Hybrid renewable energy utility systems for industrial sites: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    4. Bhusal, Yogesh & Hassanzadeh, Ali & Jiang, Lun & Winston, Roland, 2020. "Technical and economic analysis of a novel low-cost concentrated medium-temperature solar collector," Renewable Energy, Elsevier, vol. 146(C), pages 968-985.
    5. Sokhansefat, Tahmineh & Kasaeian, Alibakhsh & Rahmani, Kiana & Heidari, Ameneh Haji & Aghakhani, Faezeh & Mahian, Omid, 2018. "Thermoeconomic and environmental analysis of solar flat plate and evacuated tube collectors in cold climatic conditions," Renewable Energy, Elsevier, vol. 115(C), pages 501-508.
    6. Chopra, K. & Tyagi, V.V. & Pandey, A.K. & Sari, Ahmet, 2018. "Global advancement on experimental and thermal analysis of evacuated tube collector with and without heat pipe systems and possible applications," Applied Energy, Elsevier, vol. 228(C), pages 351-389.
    7. Gui, Qinghua & Chen, Fei & Liu, Yang & Luo, Huilong, 2023. "Preliminary study on photo-thermal conversion investigation of compound parabolic concentrator for eliminate light escape in vacuum tube interlayer," Energy, Elsevier, vol. 271(C).
    8. Chuan Jiang & Lei Yu & Song Yang & Keke Li & Jun Wang & Peter D. Lund & Yaoming Zhang, 2020. "A Review of the Compound Parabolic Concentrator (CPC) with a Tubular Absorber," Energies, MDPI, vol. 13(3), pages 1-31, February.
    9. Ferry, Jonathan & Widyolar, Bennett & Jiang, Lun & Winston, Roland, 2020. "Solar thermal wastewater evaporation for brine management and low pressure steam using the XCPC," Applied Energy, Elsevier, vol. 265(C).
    10. Parupudi, Ranga Vihari & Singh, Harjit & Kolokotroni, Maria, 2020. "Low Concentrating Photovoltaics (LCPV) for buildings and their performance analyses," Applied Energy, Elsevier, vol. 279(C).
    11. Xu, Jintao & Chen, Fei & Xia, Entong & Gao, Chong & Deng, Chenggang, 2020. "An optimization design method and optical performance analysis on multi-sectioned compound parabolic concentrator with cylindrical absorber," Energy, Elsevier, vol. 197(C).
    12. Przemyslaw Zawadzki & Firdaus Muhammad-Sukki & Siti Hawa Abu-Bakar & Nurul Aini Bani & Abdullahi Abubakar Mas’ud & Jorge Alfredo Ardila-Rey & Abu Bakar Munir, 2020. "Life Cycle Assessment of a Rotationally Asymmetrical Compound Parabolic Concentrator (RACPC)," Sustainability, MDPI, vol. 12(11), pages 1-15, June.
    13. Imtiaz Hussain, M. & Lee, Gwi Hyun & Kim, Jun-Tae, 2017. "Experimental validation of mathematical models of identical aluminum and stainless steel engineered conical solar collectors," Renewable Energy, Elsevier, vol. 112(C), pages 44-52.
    14. Zhang, Xueyan & Gao, Teng & Liu, Yang & Chen, Fei, 2023. "Construction and concentrating performance of a critically truncated compound parabolic concentrator without light escape," Energy, Elsevier, vol. 269(C).
    15. Julian Schumann & Bert Schiebler & Federico Giovannetti, 2021. "Performance Evaluation of an Evacuated Tube Collector with a Low-Cost Diffuse Reflector," Energies, MDPI, vol. 14(24), pages 1-16, December.
    16. Stefan Arens & Sunke Schlüters & Benedikt Hanke & Karsten von Maydell & Carsten Agert, 2020. "Sustainable Residential Energy Supply: A Literature Review-Based Morphological Analysis," Energies, MDPI, vol. 13(2), pages 1-28, January.
    17. David Redpath & Anshul Paneri & Harjit Singh & Ahmed Ghitas & Mohamed Sabry, 2022. "Design of a Building-Scale Space Solar Cooling System Using TRNSYS," Sustainability, MDPI, vol. 14(18), pages 1-17, September.
    18. Islam, Md. Parvez & Morimoto, Tetsuo, 2018. "Advances in low to medium temperature non-concentrating solar thermal technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2066-2093.
    19. Shafieian, Abdellah & Khiadani, Mehdi & Nosrati, Ataollah, 2018. "A review of latest developments, progress, and applications of heat pipe solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 273-304.
    20. Liu, Zhijian & Liu, Yuanwei & He, Bao-Jie & Xu, Wei & Jin, Guangya & Zhang, Xutao, 2019. "Application and suitability analysis of the key technologies in nearly zero energy buildings in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 329-345.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:134:y:2019:i:c:p:247-257. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.