IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v199y2022icp1580-1592.html
   My bibliography  Save this article

A novel asymmetric compound parabolic collector under experimental and numerical investigation

Author

Listed:
  • Korres, Dimitrios N.
  • Tzivanidis, Christos

Abstract

In this study a novel compound parabolic collector (CPC) with an asymmetric reflector and an evacuated U-pipe tubular receiver was examined numerically and experimentally. The thermal operation of the system was tested in a range of 22–70 °C inlet temperature in the city of Athens in Greece, using water as the working fluid. The collector was oriented towards the sun in each case, while the measurements where conducted for 10 min regarding each operating point. The data acquisition as regards the solar irradiation intensity, the inlet, the outlet and the ambient temperature was conducted every 30 s. The experimental results were also validated by developing a numerical model in SolidWorks Flow Simulation environment. Particularly, it was found that the numerical results diverge from the experimental one by 3% on average, with the maximum declination to take the value of 5.17%. By this simulation it was possible to estimate the temperature of the receiver and the convection regime at the interior of the U-pipe. The convective coefficient at the interior of the flow tube was also validated through a theoretical model. Last but not least, the collector was compared with three other designs taken from literature as regards the optical performance.

Suggested Citation

  • Korres, Dimitrios N. & Tzivanidis, Christos, 2022. "A novel asymmetric compound parabolic collector under experimental and numerical investigation," Renewable Energy, Elsevier, vol. 199(C), pages 1580-1592.
  • Handle: RePEc:eee:renene:v:199:y:2022:i:c:p:1580-1592
    DOI: 10.1016/j.renene.2022.08.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812201196X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.08.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Korres, D.N. & Tzivanidis, C., 2019. "Numerical investigation and optimization of an experimentally analyzed solar CPC," Energy, Elsevier, vol. 172(C), pages 57-67.
    2. Koronaki, I.P. & Nitsas, M.T., 2018. "Experimental and theoretical performance investigation of asymmetric photovoltaic/thermal hybrid solar collectors connected in series," Renewable Energy, Elsevier, vol. 118(C), pages 654-672.
    3. Korres, Dimitrios & Tzivanidis, Christos, 2018. "A new mini-CPC with a U-type evacuated tube under thermal and optical investigation," Renewable Energy, Elsevier, vol. 128(PB), pages 529-540.
    4. Li, Qiyuan & Zheng, Cheng & Shirazi, Ali & Bany Mousa, Osama & Moscia, Fabio & Scott, Jason A. & Taylor, Robert A., 2017. "Design and analysis of a medium-temperature, concentrated solar thermal collector for air-conditioning applications," Applied Energy, Elsevier, vol. 190(C), pages 1159-1173.
    5. Osório, T. & Horta, P. & Collares-Pereira, M., 2019. "Method for customized design of a quasi-stationary CPC-type solar collector to minimize the energy cost," Renewable Energy, Elsevier, vol. 133(C), pages 1086-1098.
    6. Osório, T. & Horta, P. & Marchã, J. & Collares-Pereira, M., 2019. "One-Sun CPC-type solar collectors with evacuated tubular receivers," Renewable Energy, Elsevier, vol. 134(C), pages 247-257.
    7. Korres, Dimitrios N. & Tzivanidis, Christos & Koronaki, Irene P. & Nitsas, Michael T., 2019. "Experimental, numerical and analytical investigation of a U-type evacuated tube collectors' array," Renewable Energy, Elsevier, vol. 135(C), pages 218-231.
    8. Kessentini, Hamdi & Bouden, Chiheb, 2013. "Numerical and experimental study of an integrated solar collector with CPC reflectors," Renewable Energy, Elsevier, vol. 57(C), pages 577-586.
    9. Martínez-Rodríguez, Guillermo & Fuentes-Silva, Amanda L. & Picón-Núñez, Martín, 2018. "Solar thermal networks operating with evacuated-tube collectors," Energy, Elsevier, vol. 146(C), pages 26-33.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dimitrios N. Korres & Evangelos Bellos & Christos Tzivanidis, 2022. "Integration of a Linear Cavity Receiver in an Asymmetric Compound Parabolic Collector," Energies, MDPI, vol. 15(22), pages 1-19, November.
    2. Dimitrios N. Korres & Theodoros Papingiotis & Irene Koronaki & Christos Tzivanidis, 2023. "Thermal and Optical Analyses of a Hybrid Solar Photovoltaic/Thermal (PV/T) Collector with Asymmetric Reflector: Numerical Modeling and Validation with Experimental Results," Sustainability, MDPI, vol. 15(13), pages 1-22, June.
    3. Riaz, Hamza & Ali, Muzaffar & Akhter, Javed & Sheikh, Nadeem Ahmed & Rashid, Muhammad & Usman, Muhammad, 2023. "Numerical and experimental investigations of an involute shaped solar compound parabolic collector with variable concentration ratio," Renewable Energy, Elsevier, vol. 216(C).
    4. Barthwal, Mohit & Rakshit, Dibakar, 2023. "A solar spectral splitting-based PVT collector with packed transparent tube receiver for co-generation of heat and electricity," Applied Energy, Elsevier, vol. 352(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Korres, Dimitrios N. & Tzivanidis, Christos & Koronaki, Irene P. & Nitsas, Michael T., 2019. "Experimental, numerical and analytical investigation of a U-type evacuated tube collectors' array," Renewable Energy, Elsevier, vol. 135(C), pages 218-231.
    2. Korres, D.N. & Tzivanidis, C., 2019. "Numerical investigation and optimization of an experimentally analyzed solar CPC," Energy, Elsevier, vol. 172(C), pages 57-67.
    3. Habib Shoeibi & Azad Jarrahian & Mehdi Mehrpooya & Ehsanolah Assaerh & Mohsen Izadi & Fathollah Pourfayaz, 2022. "Mathematical Modeling and Simulation of a Compound Parabolic Concentrators Collector with an Absorber Tube," Energies, MDPI, vol. 16(1), pages 1-20, December.
    4. Santosh, R. & Kumaresan, G. & Pon Pavithiran, C.K. & Mathu, P. & Velraj, R., 2023. "Effect of geometric variation and solar flux distribution on performance enhancement of absorber tube thermal characteristics for compound parabolic collectors," Renewable Energy, Elsevier, vol. 210(C), pages 671-686.
    5. Xia, En-Tong & Chen, Fei, 2020. "Analyzing thermal properties of solar evacuated tube arrays coupled with mini-compound parabolic concentrator," Renewable Energy, Elsevier, vol. 153(C), pages 155-167.
    6. Fathabadi, Hassan, 2020. "Novel solar collector: Evaluating the impact of nanoparticles added to the collector’s working fluid, heat transfer fluid temperature and flow rate," Renewable Energy, Elsevier, vol. 148(C), pages 1165-1173.
    7. Li, Yongcai & Jiao, Feng & Chen, Fei & Zhang, Zhenhua, 2021. "Design optimization and optical performance analysis on multi-sectioned compound parabolic concentrator with plane absorber," Renewable Energy, Elsevier, vol. 168(C), pages 913-926.
    8. Dimitrios N. Korres & Evangelos Bellos & Christos Tzivanidis, 2022. "Integration of a Linear Cavity Receiver in an Asymmetric Compound Parabolic Collector," Energies, MDPI, vol. 15(22), pages 1-19, November.
    9. Yang, Moucun & Moghimi, M.A. & Zhu, Yuezhao & Qiao, Runpeng & Wang, Yinfeng & Taylor, Robert A., 2020. "Optical and thermal performance analysis of a micro parabolic trough collector for building integration," Applied Energy, Elsevier, vol. 260(C).
    10. Korres, Dimitrios & Tzivanidis, Christos, 2018. "A new mini-CPC with a U-type evacuated tube under thermal and optical investigation," Renewable Energy, Elsevier, vol. 128(PB), pages 529-540.
    11. Riaz, Hamza & Ali, Muzaffar & Akhter, Javed & Sheikh, Nadeem Ahmed & Rashid, Muhammad & Usman, Muhammad, 2023. "Numerical and experimental investigations of an involute shaped solar compound parabolic collector with variable concentration ratio," Renewable Energy, Elsevier, vol. 216(C).
    12. Jing Zhao & Yu Shan, 2020. "A Fuzzy Control Strategy Using the Load Forecast for Air Conditioning System," Energies, MDPI, vol. 13(3), pages 1-17, January.
    13. Moss, R.W. & Henshall, P. & Arya, F. & Shire, G.S.F. & Hyde, T. & Eames, P.C., 2018. "Performance and operational effectiveness of evacuated flat plate solar collectors compared with conventional thermal, PVT and PV panels," Applied Energy, Elsevier, vol. 216(C), pages 588-601.
    14. Evangelos Bellos & Dimitrios N. Korres & Christos Tzivanidis, 2023. "Investigation of a Compound Parabolic Collector with a Flat Glazing," Sustainability, MDPI, vol. 15(5), pages 1-17, February.
    15. Jin, Rihui & Zheng, Hongfei & Ma, Xinglong & Zhao, Yunsheng, 2020. "Performance investigation of integrated concentrating solar air heater with curved Fresnel lens as the cover," Energy, Elsevier, vol. 194(C).
    16. Chen, Xiaomeng & Wang, Yang & Yang, Xudong, 2023. "New biaxial approach to evaluate the optical performance of evacuated tube solar thermal collector," Energy, Elsevier, vol. 271(C).
    17. Li, Hong & Liu, Hongyuan & Li, Min, 2022. "Review on heat pipe based solar collectors: Classifications, performance evaluation and optimization, and effectiveness improvements," Energy, Elsevier, vol. 244(PA).
    18. Gianluca Marotta & Paola Sansoni & Franco Francini & David Jafrancesco & Maurizio De Lucia & Daniela Fontani, 2020. "Structured Light Profilometry on m-PTC," Energies, MDPI, vol. 13(21), pages 1-17, October.
    19. Cui, Yuanlong & Zhu, Jie & Zoras, Stamatis & Zhang, Jizhe, 2021. "Comprehensive review of the recent advances in PV/T system with loop-pipe configuration and nanofluid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    20. Faisal Masood & Nursyarizal Bin Mohd Nor & Perumal Nallagownden & Irraivan Elamvazuthi & Rahman Saidur & Mohammad Azad Alam & Javed Akhter & Mohammad Yusuf & Mubbashar Mehmood & Mujahid Ali, 2022. "A Review of Recent Developments and Applications of Compound Parabolic Concentrator-Based Hybrid Solar Photovoltaic/Thermal Collectors," Sustainability, MDPI, vol. 14(9), pages 1-30, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:199:y:2022:i:c:p:1580-1592. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.