IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v271y2023ics0360544223003730.html
   My bibliography  Save this article

Preliminary study on photo-thermal conversion investigation of compound parabolic concentrator for eliminate light escape in vacuum tube interlayer

Author

Listed:
  • Gui, Qinghua
  • Chen, Fei
  • Liu, Yang
  • Luo, Huilong

Abstract

The ELE-CPC (Eliminate Light Escape Compound Parabolic Concentrator, ELE-CPC) system with vacuum tube absorber is constructed to solve the problem of light escaping in the vacuum interlayer when the conventional vacuum tube absorber is coupled to CPC. The solar ELE-CPC photo-thermal conversion model is established theoretically, and the reliability of the model is validated by outdoor experiments. It is found that the average output temperature of ELE-CPC system is 366.4 K, the average thermal efficiency is 61.3%, and the maximum relative error of the theoretical model is less than 13.2%. The thermal collection efficiency of the ELE-CPC system improves with the increase of its flow rate. Evaluation of the operating characteristics of ELE-CPC showed that the useful energy obtained by ELE-CPC increased throughout the year, especially in April, the average daily utilized solar energy obtained by ELE-CPC increased by 6.9% compared with S-CPC (Standard CPC, S-CPC). Solar ELE-CPC system with such heat collection performance has a good application prospect in the fields of material drying, building heating, seawater desalination and so on.

Suggested Citation

  • Gui, Qinghua & Chen, Fei & Liu, Yang & Luo, Huilong, 2023. "Preliminary study on photo-thermal conversion investigation of compound parabolic concentrator for eliminate light escape in vacuum tube interlayer," Energy, Elsevier, vol. 271(C).
  • Handle: RePEc:eee:energy:v:271:y:2023:i:c:s0360544223003730
    DOI: 10.1016/j.energy.2023.126979
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223003730
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.126979?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pinel, Patrice & Cruickshank, Cynthia A. & Beausoleil-Morrison, Ian & Wills, Adam, 2011. "A review of available methods for seasonal storage of solar thermal energy in residential applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(7), pages 3341-3359, September.
    2. Widyolar, Bennett & Jiang, Lun & Ferry, Jonathan & Winston, Roland, 2018. "Non-tracking East-West XCPC solar thermal collector for 200 celsius applications," Applied Energy, Elsevier, vol. 216(C), pages 521-533.
    3. Chen, Fei & Liu, Yang, 2022. "Model construction and performance investigation of multi-section compound parabolic concentrator with solar vacuum tube," Energy, Elsevier, vol. 250(C).
    4. Chen, Fei & Gui, Qinghua, 2022. "Construction and analysis of a compound parabolic concentrator to eliminate light escape in the interlayer of solar vacuum tube," Renewable Energy, Elsevier, vol. 191(C), pages 225-237.
    5. Sabiha, M.A. & Saidur, R. & Mekhilef, Saad & Mahian, Omid, 2015. "Progress and latest developments of evacuated tube solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1038-1054.
    6. Hulin Huang & Yuehong Su & Yibing Gao & Saffa Riffat, 2011. "Design analysis of a Fresnel lens concentrating PV cell," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 6(3), pages 165-170, January.
    7. Tang, Feng & Li, Guihua & Tang, Runsheng, 2016. "Design and optical performance of CPC based compound plane concentrators," Renewable Energy, Elsevier, vol. 95(C), pages 140-151.
    8. Chandrasekar, M. & Senthilkumar, T. & Kumaragurubaran, B. & Fernandes, J. Peter, 2018. "Experimental investigation on a solar dryer integrated with condenser unit of split air conditioner (A/C) for enhancing drying rate," Renewable Energy, Elsevier, vol. 122(C), pages 375-381.
    9. Palomba, Valeria & Borri, Emiliano & Charalampidis, Antonios & Frazzica, Andrea & Cabeza, Luisa F. & Karellas, Sotirios, 2020. "Implementation of a solar-biomass system for multi-family houses: Towards 100% renewable energy utilization," Renewable Energy, Elsevier, vol. 166(C), pages 190-209.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Can & Liang, Kai & Huang, Jiguang & He, Shuyu & Zhang, Heng & Chen, Haiping, 2024. "Experimental analysis of a solar interfacial evaporation under high power concentrator," Energy, Elsevier, vol. 295(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Xueyan & Gao, Teng & Liu, Yang & Chen, Fei, 2023. "Construction and concentrating performance of a critically truncated compound parabolic concentrator without light escape," Energy, Elsevier, vol. 269(C).
    2. Zheng, Canyang & Zhang, Xueyan & Luo, Huilong & Chen, Fei & Xiao, Liye & Wang, Xin & Gao, Xuerong, 2024. "Optical performance investigation for spatially separated non-imaging concentrator with congruent plane concentrating surface," Energy, Elsevier, vol. 299(C).
    3. Zhang, Xueyan & Li, Jiayue & Chen, Jun & Chen, Fei, 2023. "Preliminary investigation on optical performance of linear fresnel lens coupled compound parabolic concentrator," Energy, Elsevier, vol. 278(PA).
    4. Xu, Jintao & Chen, Fei & Xia, Entong & Gao, Chong & Deng, Chenggang, 2020. "An optimization design method and optical performance analysis on multi-sectioned compound parabolic concentrator with cylindrical absorber," Energy, Elsevier, vol. 197(C).
    5. Chen, Fei & Gui, Qinghua, 2022. "Construction and analysis of a compound parabolic concentrator to eliminate light escape in the interlayer of solar vacuum tube," Renewable Energy, Elsevier, vol. 191(C), pages 225-237.
    6. Chen, Fei & Liu, Yang, 2022. "Model construction and performance investigation of multi-section compound parabolic concentrator with solar vacuum tube," Energy, Elsevier, vol. 250(C).
    7. Li, Yongcai & Jiao, Feng & Chen, Fei & Zhang, Zhenhua, 2021. "Design optimization and optical performance analysis on multi-sectioned compound parabolic concentrator with plane absorber," Renewable Energy, Elsevier, vol. 168(C), pages 913-926.
    8. Xu, Jintao & Chen, Fei & Deng, Chenggang, 2021. "Design and analysis of a novel multi-sectioned compound parabolic concentrator with multi-objective genetic algorithm," Energy, Elsevier, vol. 225(C).
    9. Bhusal, Yogesh & Hassanzadeh, Ali & Jiang, Lun & Winston, Roland, 2020. "Technical and economic analysis of a novel low-cost concentrated medium-temperature solar collector," Renewable Energy, Elsevier, vol. 146(C), pages 968-985.
    10. Santosh, R. & Kumaresan, G. & Pon Pavithiran, C.K. & Mathu, P. & Velraj, R., 2023. "Effect of geometric variation and solar flux distribution on performance enhancement of absorber tube thermal characteristics for compound parabolic collectors," Renewable Energy, Elsevier, vol. 210(C), pages 671-686.
    11. Liu, Yang & Gui, Qinghua & Xiao, Liye & Zheng, Canyang & Zhang, Youyang & Chen, Fei, 2023. "Photothermal conversion performance based on optimized design of multi-section compound parabolic concentrator," Renewable Energy, Elsevier, vol. 209(C), pages 286-297.
    12. Osório, T. & Horta, P. & Marchã, J. & Collares-Pereira, M., 2019. "One-Sun CPC-type solar collectors with evacuated tubular receivers," Renewable Energy, Elsevier, vol. 134(C), pages 247-257.
    13. Barthwal, Mohit & Rakshit, Dibakar, 2023. "A solar spectral splitting-based PVT collector with packed transparent tube receiver for co-generation of heat and electricity," Applied Energy, Elsevier, vol. 352(C).
    14. Xia, En-Tong & Chen, Fei, 2020. "Analyzing thermal properties of solar evacuated tube arrays coupled with mini-compound parabolic concentrator," Renewable Energy, Elsevier, vol. 153(C), pages 155-167.
    15. Launay, S. & Kadoch, B. & Le Métayer, O. & Parrado, C., 2019. "Analysis strategy for multi-criteria optimization: Application to inter-seasonal solar heat storage for residential building needs," Energy, Elsevier, vol. 171(C), pages 419-434.
    16. Hemmatabady, Hoofar & Welsch, Bastian & Formhals, Julian & Sass, Ingo, 2022. "AI-based enviro-economic optimization of solar-coupled and standalone geothermal systems for heating and cooling," Applied Energy, Elsevier, vol. 311(C).
    17. Formolli, M. & Kleiven, T. & Lobaccaro, G., 2023. "Assessing solar energy accessibility at high latitudes: A systematic review of urban spatial domains, metrics, and parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    18. Gao, Datong & Zhao, Bin & Kwan, Trevor Hocksun & Hao, Yong & Pei, Gang, 2022. "The spatial and temporal mismatch phenomenon in solar space heating applications: status and solutions," Applied Energy, Elsevier, vol. 321(C).
    19. Ma, Qijie & Wang, Peijun, 2020. "Underground solar energy storage via energy piles," Applied Energy, Elsevier, vol. 261(C).
    20. Deng, Cheng-gang & Chen, Fei, 2021. "Model verification and photo-thermal conversion assessment of a novel facade embedded compound parabolic concentrator," Energy, Elsevier, vol. 220(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:271:y:2023:i:c:s0360544223003730. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.