IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v134y2019icp1362-1368.html
   My bibliography  Save this article

Experimental analysis of a cooling system effect on photovoltaic panels' efficiency and its preheating water production

Author

Listed:
  • Fakouriyan, Samaneh
  • Saboohi, Yadollah
  • Fathi, Amirhossein

Abstract

This paper addresses a low complexity and high efficient cooling system applicable on photovoltaic (PV) system leading to enhance electrical efficiency and provide preheated water. The developed system consists of a photovoltaic panel, a cooling water system establishing a uniform surface temperature, and a solar water heater. According to the proposed system characteristics, the setup is constructed based on a single mono-crystalline solar panel to absorb more solar radiation intensity and generate more electrical energy per area in compare to a poly-crystalline panel. The preheated water produced by absorbed heat from the photovoltaic is conducted to a solar water heater to satisfy domestic hot water demand. The experimental results show the electrical, thermal and overall energy efficiencies are boosted to 12.3%, 49.4%, and 61.7%, respectively. The results are obtained on July in Tehran, Iran. Moreover, comparing the performance of the cooling system with the conventional systems reveals that the proposed system has higher efficiency originated from the uniform minute holes in the implemented shower stuck on the panel back. Furthermore, if the heat transferred to water in the cooling system is utilized, the payback period is estimated 1.7 years; otherwise, the payback period exceeds 8.7 years if only PV conversion efficiency is included.

Suggested Citation

  • Fakouriyan, Samaneh & Saboohi, Yadollah & Fathi, Amirhossein, 2019. "Experimental analysis of a cooling system effect on photovoltaic panels' efficiency and its preheating water production," Renewable Energy, Elsevier, vol. 134(C), pages 1362-1368.
  • Handle: RePEc:eee:renene:v:134:y:2019:i:c:p:1362-1368
    DOI: 10.1016/j.renene.2018.09.054
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118311170
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.09.054?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chow, T.T., 2010. "A review on photovoltaic/thermal hybrid solar technology," Applied Energy, Elsevier, vol. 87(2), pages 365-379, February.
    2. Sarhaddi, F. & Farahat, S. & Ajam, H. & Behzadmehr, A. & Mahdavi Adeli, M., 2010. "An improved thermal and electrical model for a solar photovoltaic thermal (PV/T) air collector," Applied Energy, Elsevier, vol. 87(7), pages 2328-2339, July.
    3. Abdolzadeh, M. & Ameri, M., 2009. "Improving the effectiveness of a photovoltaic water pumping system by spraying water over the front of photovoltaic cells," Renewable Energy, Elsevier, vol. 34(1), pages 91-96.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Monjur Mourshed & Nahid Imtiaz Masuk & Huy Quoc Nguyen & Bahman Shabani, 2022. "An Experimental Approach to Energy and Exergy Analyses of a Hybrid PV/T System with Simultaneous Water and Air Cooling," Energies, MDPI, vol. 15(18), pages 1-17, September.
    2. Siddiqui, M.U. & Siddiqui, Osman K. & Al-Sarkhi, A. & Arif, A.F.M. & Zubair, Syed M., 2019. "A novel heat exchanger design procedure for photovoltaic panel cooling application: An analytical and experimental evaluation," Applied Energy, Elsevier, vol. 239(C), pages 41-56.
    3. Ma, Tao & Li, Meng & Kazemian, Arash, 2020. "Photovoltaic thermal module and solar thermal collector connected in series to produce electricity and high-grade heat simultaneously," Applied Energy, Elsevier, vol. 261(C).
    4. Khoshnazm, Mohammad Javad & Marzban, Ali & Azimi, Neda, 2023. "Performance enhancement of photovoltaic panels integrated with thermoelectric generators and phase change materials: Optimization and analysis of thermoelectric arrangement," Energy, Elsevier, vol. 267(C).
    5. Zeyad A. Haidar & Jamel Orfi & Zakariya Kaneesamkandi, 2020. "Photovoltaic Panels Temperature Regulation Using Evaporative Cooling Principle: Detailed Theoretical and Real Operating Conditions Experimental Approaches," Energies, MDPI, vol. 14(1), pages 1-20, December.
    6. Amirhossein Fathi & Masoomeh Bararzadeh Ledari & Yadollah Saboohi, 2021. "Evaluation of Optimal Occasional Tilt on Photovoltaic Power Plant Energy Efficiency and Land Use Requirements, Iran," Sustainability, MDPI, vol. 13(18), pages 1-20, September.
    7. Hadipour, Amirhosein & Rajabi Zargarabadi, Mehran & Rashidi, Saman, 2021. "An efficient pulsed- spray water cooling system for photovoltaic panels: Experimental study and cost analysis," Renewable Energy, Elsevier, vol. 164(C), pages 867-875.
    8. Kumar, Laveet & Hasanuzzaman, M. & Rahim, N.A. & Islam, M.M., 2021. "Modeling, simulation and outdoor experimental performance analysis of a solar-assisted process heating system for industrial process heat," Renewable Energy, Elsevier, vol. 164(C), pages 656-673.
    9. Wen, Xin & Ji, Jie & Li, Zhaomeng & Song, Zhiying, 2022. "Performance analysis of a concentrated system with series photovoltaic/thermal module and solar thermal collector integrated with PCM and TEG," Energy, Elsevier, vol. 249(C).
    10. Hassan, Atazaz & Abbas, Sajid & Yousuf, Saima & Abbas, Fakhar & Amin, N.M. & Ali, Shujaat & Shahid Mastoi, Muhammad, 2023. "An experimental and numerical study on the impact of various parameters in improving the heat transfer performance characteristics of a water based photovoltaic thermal system," Renewable Energy, Elsevier, vol. 202(C), pages 499-512.
    11. Jahangir, Mohammad Hossein & Fakouriyan, Samaneh & Vaziri Rad, Mohammad Amin & Dehghan, Hassan, 2020. "Feasibility study of on/off grid large-scale PV/WT/WEC hybrid energy system in coastal cities: A case-based research," Renewable Energy, Elsevier, vol. 162(C), pages 2075-2095.
    12. Sohani, Ali & Sayyaadi, Hoseyn, 2020. "Providing an accurate method for obtaining the efficiency of a photovoltaic solar module," Renewable Energy, Elsevier, vol. 156(C), pages 395-406.
    13. Ahmed Mohamed Soliman, 2023. "A Numerical Investigation of PVT System Performance with Various Cooling Configurations," Energies, MDPI, vol. 16(7), pages 1-25, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ulloa, Carlos & Nuñez, José M. & Lin, Chengxian & Rey, Guillermo, 2018. "AHP-based design method of a lightweight, portable and flexible air-based PV-T module for UAV shelter hangars," Renewable Energy, Elsevier, vol. 123(C), pages 767-780.
    2. Li, Wenjia & Hao, Yong, 2017. "Efficient solar power generation combining photovoltaics and mid-/low-temperature methanol thermochemistry," Applied Energy, Elsevier, vol. 202(C), pages 377-385.
    3. Gaur, Ankita & Tiwari, G.N., 2014. "Performance of a-Si thin film PV modules with and without water flow: An experimental validation," Applied Energy, Elsevier, vol. 128(C), pages 184-191.
    4. Pang, Wei & Cui, Yanan & Zhang, Qian & Wilson, Gregory.J. & Yan, Hui, 2020. "A comparative analysis on performances of flat plate photovoltaic/thermal collectors in view of operating media, structural designs, and climate conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    5. Zareie, Zahra & Ahmadi, Rouhollah & Asadi, Mahdi, 2024. "A comprehensive numerical investigation of a branch-inspired channel in roll-bond type PVT system using design of experiments approach," Energy, Elsevier, vol. 286(C).
    6. Contento, Gaetano & Lorenzi, Bruno & Rizzo, Antonella & Narducci, Dario, 2017. "Efficiency enhancement of a-Si and CZTS solar cells using different thermoelectric hybridization strategies," Energy, Elsevier, vol. 131(C), pages 230-238.
    7. Bahaidarah, H. & Subhan, Abdul & Gandhidasan, P. & Rehman, S., 2013. "Performance evaluation of a PV (photovoltaic) module by back surface water cooling for hot climatic conditions," Energy, Elsevier, vol. 59(C), pages 445-453.
    8. Oussama El Manssouri & Bekkay Hajji & Giuseppe Marco Tina & Antonio Gagliano & Stefano Aneli, 2021. "Electrical and Thermal Performances of Bi-Fluid PV/Thermal Collectors," Energies, MDPI, vol. 14(6), pages 1-20, March.
    9. Tomar, Vivek & Norton, Brian & Tiwari, G.N., 2019. "A novel approach towards investigating the performance of different PVT configurations integrated on test cells: An experimental study," Renewable Energy, Elsevier, vol. 137(C), pages 93-108.
    10. Giulio Mangherini & Valentina Diolaiti & Paolo Bernardoni & Alfredo Andreoli & Donato Vincenzi, 2023. "Review of Façade Photovoltaic Solutions for Less Energy-Hungry Buildings," Energies, MDPI, vol. 16(19), pages 1-35, September.
    11. Faisal Masood & Nursyarizal Bin Mohd Nor & Perumal Nallagownden & Irraivan Elamvazuthi & Rahman Saidur & Mohammad Azad Alam & Javed Akhter & Mohammad Yusuf & Mubbashar Mehmood & Mujahid Ali, 2022. "A Review of Recent Developments and Applications of Compound Parabolic Concentrator-Based Hybrid Solar Photovoltaic/Thermal Collectors," Sustainability, MDPI, vol. 14(9), pages 1-30, May.
    12. Schiro, Fabio & Benato, Alberto & Stoppato, Anna & Destro, Nicola, 2017. "Improving photovoltaics efficiency by water cooling: Modelling and experimental approach," Energy, Elsevier, vol. 137(C), pages 798-810.
    13. Mariyam Sattar & Abdul Rehman & Naseem Ahmad & AlSharef Mohammad & Ahmad Aziz Al Ahmadi & Nasim Ullah, 2022. "Performance Analysis and Optimization of a Cooling System for Hybrid Solar Panels Based on Climatic Conditions of Islamabad, Pakistan," Energies, MDPI, vol. 15(17), pages 1-22, August.
    14. Youngjin Choi & Masayuki Mae & Hyunwoo Roh & Wanghee Cho, 2019. "Annual Heating and Hot Water Load Reduction Effect of Air-Based Solar Heating System Using Thermal Simulation," Energies, MDPI, vol. 12(6), pages 1-17, March.
    15. Michael, Jee Joe & S, Iniyan & Goic, Ranko, 2015. "Flat plate solar photovoltaic–thermal (PV/T) systems: A reference guide," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 62-88.
    16. Zhang, Xingxing & Shen, Jingchun & Xu, Peng & Zhao, Xudong & Xu, Ying, 2014. "Socio-economic performance of a novel solar photovoltaic/loop-heat-pipe heat pump water heating system in three different climatic regions," Applied Energy, Elsevier, vol. 135(C), pages 20-34.
    17. Elbreki, A.M. & Alghoul, M.A. & Al-Shamani, A.N. & Ammar, A.A. & Yegani, Bita & Aboghrara, Alsanossi M. & Rusaln, M.H. & Sopian, K., 2016. "The role of climatic-design-operational parameters on combined PV/T collector performance: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 602-647.
    18. Zhao, Bin & Hu, Mingke & Ao, Xianze & Pei, Gang, 2017. "Conceptual development of a building-integrated photovoltaic–radiative cooling system and preliminary performance analysis in Eastern China," Applied Energy, Elsevier, vol. 205(C), pages 626-634.
    19. Nazri, Nurul Syakirah & Fudholi, Ahmad & Mustafa, Wan & Yen, Chan Hoy & Mohammad, Masita & Ruslan, Mohd Hafidz & Sopian, Kamaruzzaman, 2019. "Exergy and improvement potential of hybrid photovoltaic thermal/thermoelectric (PVT/TE) air collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 132-144.
    20. Bai, Attila & Popp, József & Balogh, Péter & Gabnai, Zoltán & Pályi, Béla & Farkas, István & Pintér, Gábor & Zsiborács, Henrik, 2016. "Technical and economic effects of cooling of monocrystalline photovoltaic modules under Hungarian conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1086-1099.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:134:y:2019:i:c:p:1362-1368. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.