IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i17p6278-d900156.html
   My bibliography  Save this article

Performance Analysis and Optimization of a Cooling System for Hybrid Solar Panels Based on Climatic Conditions of Islamabad, Pakistan

Author

Listed:
  • Mariyam Sattar

    (Department of Mechanical Engineering, Institute of Space Technology, Islamabad 44000, Pakistan)

  • Abdul Rehman

    (Department of Mechanical Engineering, Institute of Space Technology, Islamabad 44000, Pakistan)

  • Naseem Ahmad

    (Department of Mechanical Engineering, Institute of Space Technology, Islamabad 44000, Pakistan)

  • AlSharef Mohammad

    (Department of Electrical Engineering, College of Engineering, Taif University, Al-Hawiyah, Taif 11099, Saudi Arabia)

  • Ahmad Aziz Al Ahmadi

    (Department of Electrical Engineering, College of Engineering, Taif University, Al-Hawiyah, Taif 11099, Saudi Arabia)

  • Nasim Ullah

    (Department of Electrical Engineering, College of Engineering, Taif University, Al-Hawiyah, Taif 11099, Saudi Arabia)

Abstract

The unconvertible portion of incident radiation on solar panels causes an increase in their temperature and a decrease in efficiency due to the negative temperature coefficient of the maximum power. This problem is dealt with through the use of cooling systems to lower the temperature of photovoltaic (PV) panels. However, the developments are focused on the loss of efficiency or extract the heat out of the solar panel, rather than optimizing the solution to produce a net gain in the electric power output. Therefore, this study proposes the analytical model for the cell temperature, irradiance and design of absorbers. Furthermore, the cooling systems for the hybrid solar panels were developed through analytical modeling of the solar cell temperature behavior and heat exchange between the fluid and back surface of the PV module in MATLAB. The design parameters such as mass flow rate, input power, solar cell temperature, velocity, height, number of passes and maximum power output were optimized through a multi-objective, multivariable optimization algorithm to produce a net gain in the electrical power. Three layouts of heat absorbers were considered—i.e., single-pass ducts, multi-pass ducts, and tube-type heat absorbers. Water was selected as a cooling medium in the three layouts. The optimized results were achieved for the multi-pass duct with 31 passes that delivered a maximum power output of 186.713 W at a mass flow rate of 0.14 kg/s. The maximum cell temperature achieved for this configuration was 38.810 °C at a velocity of 0.092 m/s. The results from the analytical modeling were validated through two-way fluid-solid interaction simulations using ANSYS fluent and thermal modules. Analyses revealed that the multi-pass heat absorber reduces the cell temperature with the least input power and lowest fluid mass flow rate to produce the highest power output in the hybrid PV system.

Suggested Citation

  • Mariyam Sattar & Abdul Rehman & Naseem Ahmad & AlSharef Mohammad & Ahmad Aziz Al Ahmadi & Nasim Ullah, 2022. "Performance Analysis and Optimization of a Cooling System for Hybrid Solar Panels Based on Climatic Conditions of Islamabad, Pakistan," Energies, MDPI, vol. 15(17), pages 1-22, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6278-:d:900156
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/17/6278/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/17/6278/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sarhaddi, F. & Farahat, S. & Ajam, H. & Behzadmehr, A. & Mahdavi Adeli, M., 2010. "An improved thermal and electrical model for a solar photovoltaic thermal (PV/T) air collector," Applied Energy, Elsevier, vol. 87(7), pages 2328-2339, July.
    2. Alonso García, M.C. & Balenzategui, J.L., 2004. "Estimation of photovoltaic module yearly temperature and performance based on Nominal Operation Cell Temperature calculations," Renewable Energy, Elsevier, vol. 29(12), pages 1997-2010.
    3. Vinícius Silva & Julio Martinez & Raphael Heideier & Jonathas Bernal & André Gimenes & Miguel Udaeta & Marco Saidel, 2021. "A Long-Term Analysis of the Architecture and Operation of Water Film Cooling System for Commercial PV Modules," Energies, MDPI, vol. 14(6), pages 1-29, March.
    4. Abdolzadeh, M. & Ameri, M., 2009. "Improving the effectiveness of a photovoltaic water pumping system by spraying water over the front of photovoltaic cells," Renewable Energy, Elsevier, vol. 34(1), pages 91-96.
    5. Osma-Pinto, German & Ordóñez-Plata, Gabriel, 2020. "Dynamic thermal modelling for the prediction of the operating temperature of a PV panel with an integrated cooling system," Renewable Energy, Elsevier, vol. 152(C), pages 1041-1054.
    6. Bahaidarah, H. & Subhan, Abdul & Gandhidasan, P. & Rehman, S., 2013. "Performance evaluation of a PV (photovoltaic) module by back surface water cooling for hot climatic conditions," Energy, Elsevier, vol. 59(C), pages 445-453.
    7. Hasan, M. Arif & Sumathy, K., 2010. "Photovoltaic thermal module concepts and their performance analysis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1845-1859, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anis Ahmad Sher & Naseem Ahmad & Mariyam Sattar & Usman Ghafoor & Umer Hameed Shah, 2023. "Effect of Various Dusts and Humidity on the Performance of Renewable Energy Modules," Energies, MDPI, vol. 16(13), pages 1-20, June.
    2. Tarek Ibrahim & Mohamad Abou Akrouch & Farouk Hachem & Mohamad Ramadan & Haitham S. Ramadan & Mahmoud Khaled, 2024. "Cooling Techniques for Enhanced Efficiency of Photovoltaic Panels—Comparative Analysis with Environmental and Economic Insights," Energies, MDPI, vol. 17(3), pages 1-32, February.
    3. Małgorzata Jastrzębska, 2022. "Installation’s Conception in the Field of Renewable Energy Sources for the Needs of the Silesian Botanical Garden," Energies, MDPI, vol. 15(18), pages 1-28, September.
    4. Ehsanolah Assareh & Masoud Jafarian & Mojtaba Nedaei & Mohammad Firoozzadeh & Moonyong Lee, 2022. "Performance Evaluation and Optimization of a Photovoltaic/Thermal (PV/T) System according to Climatic Conditions," Energies, MDPI, vol. 15(20), pages 1-14, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elbreki, A.M. & Alghoul, M.A. & Sopian, K. & Hussein, T., 2017. "Towards adopting passive heat dissipation approaches for temperature regulation of PV module as a sustainable solution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 961-1017.
    2. Michael, Jee Joe & S, Iniyan & Goic, Ranko, 2015. "Flat plate solar photovoltaic–thermal (PV/T) systems: A reference guide," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 62-88.
    3. Ruoping, Yan & Xiaohui, Yu & Fuwei, Lu & Huajun, Wang, 2020. "Study of operation performance for a solar photovoltaic system assisted cooling by ground heat exchangers in arid climate, China," Renewable Energy, Elsevier, vol. 155(C), pages 102-110.
    4. Ulloa, Carlos & Nuñez, José M. & Lin, Chengxian & Rey, Guillermo, 2018. "AHP-based design method of a lightweight, portable and flexible air-based PV-T module for UAV shelter hangars," Renewable Energy, Elsevier, vol. 123(C), pages 767-780.
    5. Sargunanathan, S. & Elango, A. & Mohideen, S. Tharves, 2016. "Performance enhancement of solar photovoltaic cells using effective cooling methods: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 382-393.
    6. Shiravi, Amir Hossein & Firoozzadeh, Mohammad & Lotfi, Marzieh, 2022. "Experimental study on the effects of air blowing and irradiance intensity on the performance of photovoltaic modules, using Central Composite Design," Energy, Elsevier, vol. 238(PA).
    7. Hadipour, Amirhosein & Rajabi Zargarabadi, Mehran & Rashidi, Saman, 2021. "An efficient pulsed- spray water cooling system for photovoltaic panels: Experimental study and cost analysis," Renewable Energy, Elsevier, vol. 164(C), pages 867-875.
    8. Pang, Wei & Cui, Yanan & Zhang, Qian & Wilson, Gregory.J. & Yan, Hui, 2020. "A comparative analysis on performances of flat plate photovoltaic/thermal collectors in view of operating media, structural designs, and climate conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    9. Ooshaksaraei, Poorya & Sopian, Kamaruzzaman & Zaidi, Saleem H. & Zulkifli, Rozli, 2017. "Performance of four air-based photovoltaic thermal collectors configurations with bifacial solar cells," Renewable Energy, Elsevier, vol. 102(PB), pages 279-293.
    10. Jae Woo Ko & Hae Lim Cha & David Kwang-Soon Kim & Jong Rok Lim & Gyu Gwang Kim & Byeong Gwan Bhang & Chang Sub Won & Han Sang Jung & Dong Hyung Kang & Hyung Keun Ahn, 2017. "Safety Analysis of Grounding Resistance with Depth of Water for Floating PVs," Energies, MDPI, vol. 10(9), pages 1-12, September.
    11. Farooq, Abdul Samad & Zhang, Peng & Gao, Yongfeng & Gulfam, Raza, 2021. "Emerging radiative materials and prospective applications of radiative sky cooling - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    12. Alami, Abdul Hai, 2016. "Synthetic clay as an alternative backing material for passive temperature control of photovoltaic cells," Energy, Elsevier, vol. 108(C), pages 195-200.
    13. Bahaidarah, H. & Subhan, Abdul & Gandhidasan, P. & Rehman, S., 2013. "Performance evaluation of a PV (photovoltaic) module by back surface water cooling for hot climatic conditions," Energy, Elsevier, vol. 59(C), pages 445-453.
    14. Bevilacqua, Piero & Bruno, Roberto & Arcuri, Natale, 2020. "Comparing the performances of different cooling strategies to increase photovoltaic electric performance in different meteorological conditions," Energy, Elsevier, vol. 195(C).
    15. Piero Bevilacqua & Stefania Perrella & Daniela Cirone & Roberto Bruno & Natale Arcuri, 2021. "Efficiency Improvement of Photovoltaic Modules via Back Surface Cooling," Energies, MDPI, vol. 14(4), pages 1-18, February.
    16. Yadav, Amit Kumar & Chandel, S.S., 2017. "Identification of relevant input variables for prediction of 1-minute time-step photovoltaic module power using Artificial Neural Network and Multiple Linear Regression Models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 955-969.
    17. Salem, M.R. & Elsayed, M.M. & Abd-Elaziz, A.A. & Elshazly, K.M., 2019. "Performance enhancement of the photovoltaic cells using Al2O3/PCM mixture and/or water cooling-techniques," Renewable Energy, Elsevier, vol. 138(C), pages 876-890.
    18. Ji, Yishuang & Lv, Song & Qian, Zuoqin & Ji, Yitong & Ren, Juwen & Liang, Kaiming & Wang, Shulong, 2022. "Comparative study on cooling method for concentrating photovoltaic system," Energy, Elsevier, vol. 253(C).
    19. Elbreki, A.M. & Alghoul, M.A. & Al-Shamani, A.N. & Ammar, A.A. & Yegani, Bita & Aboghrara, Alsanossi M. & Rusaln, M.H. & Sopian, K., 2016. "The role of climatic-design-operational parameters on combined PV/T collector performance: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 602-647.
    20. Sato, Daisuke & Yamada, Noboru, 2019. "Review of photovoltaic module cooling methods and performance evaluation of the radiative cooling method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 151-166.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6278-:d:900156. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.