IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v134y2019icp1240-1247.html
   My bibliography  Save this article

Performance optimization and benefit analyses of a photovoltaic loop heat pipe/solar assisted heat pump water heating system

Author

Listed:
  • Li, Hong
  • Sun, Yue

Abstract

The aim of this paper was to present a dedicated theoretical investigation into the energy and social-economic performance of a novel photovoltaic loop heat pipe/solar assisted heat pump (PV-LHP/SAHP) water heating system. This involved key structural parameters optimization, operation strategy analyses, energy conservation and environmental benefits analyses and conclusion. The simulation results showed the optimal water tank volume and PV coverage fraction were 150 L and 0.668, respectively. And the suggested operation strategy for the target system is to operate in the PV-LHP mode from 8:00 to 14:00 and run in the heat pump mode after that. With such operation strategy, the net electricity consumption of the optimal system could be reduced by 55.7%, compared to the one with the original design. The annual solar heating fraction and electricity supply ratio were also increased by 7.0% and 26.1%. In terms of energy conservation, the electricity consumption could be reduced by 79.4%. As for environmental benefits, CO2 emission could be cut down by 73.9%. With regard to economic feasibility, the life cycle cost could be saved by 57.3%. The optimal system could have better promising prospect for household application in cold climate area than traditional air source heat pump (ASHP) systems.

Suggested Citation

  • Li, Hong & Sun, Yue, 2019. "Performance optimization and benefit analyses of a photovoltaic loop heat pipe/solar assisted heat pump water heating system," Renewable Energy, Elsevier, vol. 134(C), pages 1240-1247.
  • Handle: RePEc:eee:renene:v:134:y:2019:i:c:p:1240-1247
    DOI: 10.1016/j.renene.2018.09.055
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118311182
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.09.055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Xingxing & Shen, Jingchun & Xu, Peng & Zhao, Xudong & Xu, Ying, 2014. "Socio-economic performance of a novel solar photovoltaic/loop-heat-pipe heat pump water heating system in three different climatic regions," Applied Energy, Elsevier, vol. 135(C), pages 20-34.
    2. Fuentes, E. & Arce, L. & Salom, J., 2018. "A review of domestic hot water consumption profiles for application in systems and buildings energy performance analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1530-1547.
    3. Chen, J.F. & Zhang, L. & Dai, Y.J., 2018. "Performance analysis and multi-objective optimization of a hybrid photovoltaic/thermal collector for domestic hot water application," Energy, Elsevier, vol. 143(C), pages 500-516.
    4. Zhang, Xingxing & Zhao, Xudong & Shen, Jingchun & Xu, Jihuan & Yu, Xiaotong, 2014. "Dynamic performance of a novel solar photovoltaic/loop-heat-pipe heat pump system," Applied Energy, Elsevier, vol. 114(C), pages 335-352.
    5. He, Wei & Hong, Xiaoqiang & Zhao, Xudong & Zhang, Xingxing & Shen, Jinchun & Ji, Jie, 2015. "Operational performance of a novel heat pump assisted solar façade loop-heat-pipe water heating system," Applied Energy, Elsevier, vol. 146(C), pages 371-382.
    6. Zhang, Xingxing & Zhao, Xudong & Xu, Jihuan & Yu, Xiaotong, 2013. "Characterization of a solar photovoltaic/loop-heat-pipe heat pump water heating system," Applied Energy, Elsevier, vol. 102(C), pages 1229-1245.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Zhaomeng & Ji, Jie & Li, Jing & Zhao, Xudong & Cui, Yu & Song, Zhiying & Wen, Xin & Yao, TingTing, 2022. "Experimental investigation and annual performance mathematical-prediction on a novel LT-PV/T system using spiral-descent concentric copper tube heat exchanger as the condenser for large-scale applicat," Renewable Energy, Elsevier, vol. 187(C), pages 257-270.
    2. Song, Zhiying & Ji, Jie & Zhang, Yuzhe & Cai, Jingyong & Li, Zhaomeng & Li, Yunhai, 2023. "Mathematical and experimental investigation about the dual-source heat pump integrating low concentrated photovoltaic and finned-tube exchanger," Energy, Elsevier, vol. 263(PE).
    3. Gao, Yuanzhi & Wu, Dongxu & Dai, Zhaofeng & Wang, Changling & Chen, Bo & Zhang, Xiaosong, 2023. "A comprehensive review of the current status, developments, and outlooks of heat pipe photovoltaic and photovoltaic/thermal systems," Renewable Energy, Elsevier, vol. 207(C), pages 539-574.
    4. Zhang, T. & Zhang, Y.F. & Shi, Z.R. & Li, Q.F. & Cai, J.Y., 2023. "Experimental study of a photovoltaic solar-assisted heat pump/gravity-assisted heat pipe hybrid system," Renewable Energy, Elsevier, vol. 207(C), pages 147-161.
    5. Abdo, Saber & Saidani-Scott, Hind & Benedi, Jorge & Tierney, Mike J., 2020. "Experimental study with analysis for a novel saturated activated alumina photovoltaic thermal system," Energy, Elsevier, vol. 197(C).
    6. Cui, Yuanlong & Zhu, Jie & Zoras, Stamatis & Zhang, Jizhe, 2021. "Comprehensive review of the recent advances in PV/T system with loop-pipe configuration and nanofluid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    7. Zhang, Tao & Zhang, Yufan & Shi, Zhengrong & Pei, Gang & Cai, Jingyong, 2022. "Preliminary investigation on the switching time of a photovoltaic solar-assisted heat-pump/heat-pipe hybrid system," Applied Energy, Elsevier, vol. 324(C).
    8. Cao, Jingyu & Zheng, Zhanying & Asim, Muhammad & Hu, Mingke & Wang, Qiliang & Su, Yuehong & Pei, Gang & Leung, Michael K.H., 2020. "A review on independent and integrated/coupled two-phase loop thermosyphons," Applied Energy, Elsevier, vol. 280(C).
    9. Karthikeyan Velmurugan & Rajvikram Madurai Elavarasan & Pham Van De & Vaithinathan Karthikeyan & Tulja Bhavani Korukonda & Joshuva Arockia Dhanraj & Kanchanok Emsaeng & Md. Shahariar Chowdhury & Kuaan, 2022. "A Review of Heat Batteries Based PV Module Cooling—Case Studies on Performance Enhancement of Large-Scale Solar PV System," Sustainability, MDPI, vol. 14(4), pages 1-65, February.
    10. Maleki, Yaser & Pourfayaz, Fathollah & Mehrpooya, Mehdi, 2022. "Experimental study of a novel hybrid photovoltaic/thermal and thermoelectric generators system with dual phase change materials," Renewable Energy, Elsevier, vol. 201(P2), pages 202-215.
    11. Song, Zhiying & Ji, Jie & Zhang, Yuzhe & Cai, Jingyong & Li, Zhaomeng, 2022. "Research on the multifunction concentrated solar-air heat pump system," Renewable Energy, Elsevier, vol. 198(C), pages 679-694.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eui Guk Jung & Joon Hong Boo, 2019. "A Novel Analytical Modeling of a Loop Heat Pipe Employing Thin-Film Theory: Part II—Experimental Validation," Energies, MDPI, vol. 12(12), pages 1-15, June.
    2. Eui Guk Jung & Joon Hong Boo, 2019. "A Novel Analytical Modeling of a Loop Heat Pipe Employing the Thin-Film Theory: Part I—Modeling and Simulation," Energies, MDPI, vol. 12(12), pages 1-21, June.
    3. Gao, Yuanzhi & Wu, Dongxu & Dai, Zhaofeng & Wang, Changling & Chen, Bo & Zhang, Xiaosong, 2023. "A comprehensive review of the current status, developments, and outlooks of heat pipe photovoltaic and photovoltaic/thermal systems," Renewable Energy, Elsevier, vol. 207(C), pages 539-574.
    4. Shafieian, Abdellah & Khiadani, Mehdi & Nosrati, Ataollah, 2018. "A review of latest developments, progress, and applications of heat pipe solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 273-304.
    5. Wang, Zhangyuan & Guo, Peng & Zhang, Haijing & Yang, Wansheng & Mei, Sheng, 2017. "Comprehensive review on the development of SAHP for domestic hot water," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 871-881.
    6. Fine, J.P. & Friedman, J. & Dworkin, S.B., 2015. "Transient analysis of a photovoltaic thermal heat input process with thermal storage," Applied Energy, Elsevier, vol. 160(C), pages 308-320.
    7. Yu, Min & Chen, Fucheng & Zhou, Jinzhi & Yuan, Yanping & Fan, Yi & Li, Guiqiang & Zhao, Xudong & Wang, Zhangyuan & Li, Jing & Zheng, Siming, 2022. "Experimental investigation of a novel vertical loop-heat-pipe PV/T heat and power system under different height differences," Energy, Elsevier, vol. 254(PA).
    8. Fine, J.P. & Friedman, J. & Dworkin, S.B., 2017. "Detailed modeling of a novel photovoltaic thermal cascade heat pump domestic water heating system," Renewable Energy, Elsevier, vol. 101(C), pages 500-513.
    9. Zhang, T. & Zhang, Y.F. & Shi, Z.R. & Li, Q.F. & Cai, J.Y., 2023. "Experimental study of a photovoltaic solar-assisted heat pump/gravity-assisted heat pipe hybrid system," Renewable Energy, Elsevier, vol. 207(C), pages 147-161.
    10. Nizetic, S. & Coko, D. & Marasovic, I., 2014. "Experimental study on a hybrid energy system with small- and medium-scale applications for mild climates," Energy, Elsevier, vol. 75(C), pages 379-389.
    11. Zhang, Xingxing & Shen, Jingchun & Xu, Peng & Zhao, Xudong & Xu, Ying, 2014. "Socio-economic performance of a novel solar photovoltaic/loop-heat-pipe heat pump water heating system in three different climatic regions," Applied Energy, Elsevier, vol. 135(C), pages 20-34.
    12. Bing Liu & Linqing Yang & Tiangang Lv & Li Zhu & Mingda Ji & Weihang Hu, 2024. "Application of PVT Coupled Solar Heat Pump System in the Renovation of Existing Campus Buildings," Energies, MDPI, vol. 17(19), pages 1-20, October.
    13. Chen, Hongbing & Zhang, Lei & Jie, Pengfei & Xiong, Yaxuan & Xu, Peng & Zhai, Huixing, 2017. "Performance study of heat-pipe solar photovoltaic/thermal heat pump system," Applied Energy, Elsevier, vol. 190(C), pages 960-980.
    14. He, Wei & Hong, Xiaoqiang & Zhao, Xudong & Zhang, Xingxing & Shen, Jinchun & Ji, Jie, 2015. "Operational performance of a novel heat pump assisted solar façade loop-heat-pipe water heating system," Applied Energy, Elsevier, vol. 146(C), pages 371-382.
    15. Ren, Xiao & Yu, Min & Zhao, Xudong & Li, Jing & Zheng, Siming & Chen, Fucheng & Wang, Zhangyuan & Zhou, Jinzhi & Pei, Gang & Ji, Jie, 2020. "Assessment of the cost reduction potential of a novel loop-heat-pipe solar photovoltaic/thermal system by employing the distributed parameter model," Energy, Elsevier, vol. 190(C).
    16. Sun, Hongli & Lin, Borong & Lin, Zhirong & Zhu, Yingxin, 2019. "Experimental study on a novel flat-heat-pipe heating system integrated with phase change material and thermoelectric unit," Energy, Elsevier, vol. 189(C).
    17. Herrando, M. & Coca-Ortegón, A. & Guedea, I. & Fueyo, N., 2023. "Experimental validation of a solar system based on hybrid photovoltaic-thermal collectors and a reversible heat pump for the energy provision in non-residential buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    18. Mohanraj, M. & Belyayev, Ye. & Jayaraj, S. & Kaltayev, A., 2018. "Research and developments on solar assisted compression heat pump systems – A comprehensive review (Part-B: Applications)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 124-155.
    19. María Herrando & Alba Ramos, 2022. "Photovoltaic-Thermal (PV-T) Systems for Combined Cooling, Heating and Power in Buildings: A Review," Energies, MDPI, vol. 15(9), pages 1-28, April.
    20. Nižetić, S. & Duić, N. & Papadopulos, A.M. & Tina, G.M. & Grubišić-Čabo, F., 2015. "Energy efficiency evaluation of a hybrid energy system for building applications in a Mediterranean climate and its feasibility aspect," Energy, Elsevier, vol. 90(P1), pages 1171-1179.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:134:y:2019:i:c:p:1240-1247. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.