IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v187y2022icp257-270.html
   My bibliography  Save this article

Experimental investigation and annual performance mathematical-prediction on a novel LT-PV/T system using spiral-descent concentric copper tube heat exchanger as the condenser for large-scale application

Author

Listed:
  • Li, Zhaomeng
  • Ji, Jie
  • Li, Jing
  • Zhao, Xudong
  • Cui, Yu
  • Song, Zhiying
  • Wen, Xin
  • Yao, TingTing

Abstract

The condensers of loop thermosyphon PV/T systems (LT-PV/T) are usually integrated inside water tanks, which may bring some challenges during combination use. This research innovatively proposed a concentric copper tube heat exchanger as the condenser, which is combined with a copper tube evaporator beneath the absorber. The gaseous working fluid flows in the inner tube and the cooling water flows in the outer tube. Since ordinary water pipes are used for water circulating between the outer tube and water tank, this LT-PV/T collector can be used individually or combined with other collectors flexibly. To access its' performance, researches have been conducted: (1) Designing and fabricating the system prototypes; (2) Investigating system performance with different volume-filling ratios (26.5%, 34.8%, 43.2%); (3) Investigating the influences of working fluid (water, ethanol and R134A). (4) Evaluating the systems’ performance with energy efficiency, exergy efficiency, and semi-empirical system efficiency models; (5) Conducting two case studies in South China (an individual collector & a 4 parallelly/serially-combined LT-PV/T collectors system). The system is first-of-its-kind and has obvious advantages in reliability, flexibility, space-saving and large-scale applications. The typical primary energy-saving efficiency of the LT-PV/T with R134a of 40% filling ratio can reach 78.0%, higher than the published LT-PV/T systems.

Suggested Citation

  • Li, Zhaomeng & Ji, Jie & Li, Jing & Zhao, Xudong & Cui, Yu & Song, Zhiying & Wen, Xin & Yao, TingTing, 2022. "Experimental investigation and annual performance mathematical-prediction on a novel LT-PV/T system using spiral-descent concentric copper tube heat exchanger as the condenser for large-scale applicat," Renewable Energy, Elsevier, vol. 187(C), pages 257-270.
  • Handle: RePEc:eee:renene:v:187:y:2022:i:c:p:257-270
    DOI: 10.1016/j.renene.2022.01.079
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122000891
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.01.079?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cui, Yuanlong & Zhu, Jie & Zoras, Stamatis & Zhang, Jizhe, 2021. "Comprehensive review of the recent advances in PV/T system with loop-pipe configuration and nanofluid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    2. Li, Zhaomeng & Ji, Jie & Yuan, Weiqi & Song, Zhiying & Ren, Xiao & Uddin, Md Muin & Luo, Kun & Zhao, Xudong, 2020. "Experimental and numerical investigations on the performance of a G-PV/T system comparing with A-PV/T system," Energy, Elsevier, vol. 194(C).
    3. Yu, Min & Chen, Fucheng & Zheng, Siming & Zhou, Jinzhi & Zhao, Xudong & Wang, Zhangyuan & Li, Guiqiang & Li, Jing & Fan, Yi & Ji, Jie & Diallo, Theirno M.O. & Hardy, David, 2019. "Experimental Investigation of a Novel Solar Micro-Channel Loop-Heat-Pipe Photovoltaic/Thermal (MC-LHP-PV/T) System for Heat and Power Generation," Applied Energy, Elsevier, vol. 256(C).
    4. Diallo, Thierno M.O. & Yu, Min & Zhou, Jinzhi & Zhao, Xudong & Shittu, Samson & Li, Guiqiang & Ji, Jie & Hardy, David, 2019. "Energy performance analysis of a novel solar PVT loop heat pipe employing a microchannel heat pipe evaporator and a PCM triple heat exchanger," Energy, Elsevier, vol. 167(C), pages 866-888.
    5. Ren, Xiao & Li, Jing & Gao, Datong & Wu, Lijun & Pei, Gang, 2021. "Analysis of a novel photovoltaic/thermal system using InGaN/GaN MQWs cells in high temperature applications," Renewable Energy, Elsevier, vol. 168(C), pages 11-20.
    6. Modjinou, Mawufemo & Ji, Jie & Yuan, Weiqi & Zhou, Fan & Holliday, Sarah & Waqas, Adeel & Zhao, Xudong, 2019. "Performance comparison of encapsulated PCM PV/T, microchannel heat pipe PV/T and conventional PV/T systems," Energy, Elsevier, vol. 166(C), pages 1249-1266.
    7. Li, Hong & Sun, Yue, 2019. "Performance optimization and benefit analyses of a photovoltaic loop heat pipe/solar assisted heat pump water heating system," Renewable Energy, Elsevier, vol. 134(C), pages 1240-1247.
    8. Zhang, Tao & Yan, Zhiwei & Pei, Gang & Zhu, Qunzhi & Ji, Jie, 2019. "Experimental optimization on the volume-filling ratio of a loop thermosyphon photovoltaic/thermal system," Renewable Energy, Elsevier, vol. 143(C), pages 233-242.
    9. Zhang, Tao & Zheng, Wenjie & Wang, Liuya & Yan, Zhiwei & Hu, Mingke, 2021. "Experimental study and numerical validation on the effect of inclination angle to the thermal performance of solar heat pipe photovoltaic/thermal system," Energy, Elsevier, vol. 223(C).
    10. Shafieian, Abdellah & Khiadani, Mehdi & Nosrati, Ataollah, 2018. "A review of latest developments, progress, and applications of heat pipe solar collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 273-304.
    11. Tewari, Kirti & Dev, Rahul, 2019. "Exergy, environmental and economic analysis of modified domestic solar water heater with glass-to-glass PV module," Energy, Elsevier, vol. 170(C), pages 1130-1150.
    12. Hu, Mingke & Guo, Chao & Zhao, Bin & Ao, Xianze & Suhendri, & Cao, Jingyu & Wang, Qiliang & Riffat, Saffa & Su, Yuehong & Pei, Gang, 2021. "A parametric study on the performance characteristics of an evacuated flat-plate photovoltaic/thermal (PV/T) collector," Renewable Energy, Elsevier, vol. 167(C), pages 884-898.
    13. Wang, Zhangyuan & Zhao, Xudong & Han, Zhonghe & Luo, Liang & Xiang, Jinwei & Zheng, Senglin & Liu, Guangming & Yu, Min & Cui, Yu & Shittu, Samson & Hu, Menglong, 2021. "Advanced big-data/machine-learning techniques for optimization and performance enhancement of the heat pipe technology – A review and prospective study," Applied Energy, Elsevier, vol. 294(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, Yuanzhi & Wu, Dongxu & Dai, Zhaofeng & Wang, Changling & Chen, Bo & Zhang, Xiaosong, 2023. "A comprehensive review of the current status, developments, and outlooks of heat pipe photovoltaic and photovoltaic/thermal systems," Renewable Energy, Elsevier, vol. 207(C), pages 539-574.
    2. Ji, Yasheng & Zhou, Jinzhi & Yu, Min & Zhong, Wei & Yuan, Yanping, 2023. "A novel multi-function “Y-shape” heat pipe photovoltaic/thermal (PV/T) system: Experimental study on the performance of hot water supply and space heating," Renewable Energy, Elsevier, vol. 218(C).
    3. Li, Zhaomeng & Ji, Jie & Zhao, Xudong & Li, Guiqiang & Cui, Yu & Song, Zhiying & Yao, Tingting, 2022. "Parametric analysis on G-PV/T collector: Performance optimization and energy trade-off among two critical structures under various outside conditions," Energy, Elsevier, vol. 255(C).
    4. Li, Hong & Liu, Hongyuan & Li, Min, 2022. "Review on heat pipe based solar collectors: Classifications, performance evaluation and optimization, and effectiveness improvements," Energy, Elsevier, vol. 244(PA).
    5. Wen, Xin & Ji, Jie & Li, Zhaomeng, 2023. "Evaluation of the phase change material in regulating all-day electrical performance in the PV-MCHP-TE system in winter," Energy, Elsevier, vol. 263(PC).
    6. Ji, Yasheng & Zhou, Jinzhi & Zhao, Kaiming & Zhang, Nan & Lu, Lin & Yuan, Yanping, 2023. "A novel dual condensers heat pipe photovoltaic/thermal (PV/T) system under different climate conditions: Electrical and thermal assessment," Energy, Elsevier, vol. 278(PB).
    7. Song, Zhiying & Ji, Jie & Cai, Jingyong & Zhao, Bin & Li, Zhaomeng, 2021. "Investigation on a direct-expansion solar-assisted heat pump with a novel hybrid compound parabolic concentrator/photovoltaic/fin evaporator," Applied Energy, Elsevier, vol. 299(C).
    8. Yu, Qinghua & Chen, Xi & Yang, Hongxing, 2021. "Research progress on utilization of phase change materials in photovoltaic/thermal systems: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    9. Cao, Jingyu & Zheng, Zhanying & Asim, Muhammad & Hu, Mingke & Wang, Qiliang & Su, Yuehong & Pei, Gang & Leung, Michael K.H., 2020. "A review on independent and integrated/coupled two-phase loop thermosyphons," Applied Energy, Elsevier, vol. 280(C).
    10. Li, Jinping & Wang, Hongyang & Liu, Xiaomin & Zhu, Junjie & Novakovic, Vojislav & Karkon, Ehsan Gholamian, 2024. "Study on the effects of acetone and R141b on the performance of micro heat pipe PV/T systems," Energy, Elsevier, vol. 297(C).
    11. Cui, Yuanlong & Zhu, Jie & Zoras, Stamatis & Zhang, Jizhe, 2021. "Comprehensive review of the recent advances in PV/T system with loop-pipe configuration and nanofluid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    12. Song, Zhiying & Ji, Jie & Zhang, Yuzhe & Cai, Jingyong & Li, Zhaomeng, 2022. "Comparative study on dual-source direct-expansion heat pumps based on different composite concentrating photovoltaic/fin evaporators," Applied Energy, Elsevier, vol. 306(PB).
    13. Zhang, Tao & Zhang, Yufan & Shi, Zhengrong & Pei, Gang & Cai, Jingyong, 2022. "Preliminary investigation on the switching time of a photovoltaic solar-assisted heat-pump/heat-pipe hybrid system," Applied Energy, Elsevier, vol. 324(C).
    14. Zhang, Tao & Cai, Jingyong & Wang, Liuya & Meng, Qingliang, 2022. "Comparative and sensitive analysis on the filling, operating and performance patterns between the solar gravity heat pipe and the traditional gravity heat pipe," Energy, Elsevier, vol. 238(PC).
    15. Shahsavar, Amin & Arıcı, Müslüm, 2023. "Energy and exergy analysis and optimization of a novel heating, cooling, and electricity generation system composed of PV/T-heat pipe system and thermal wheel," Renewable Energy, Elsevier, vol. 203(C), pages 394-406.
    16. Li, Zhaomeng & Ji, Jie & Zhang, Feng & Zhao, Bin & Xu, Ruru & Cui, Yu & Song, Zhiying & Wen, Xin, 2021. "Investigation on the all-day electrical/thermal and antifreeze performance of a new vacuum double-glazing PV/T collector in typical climates — Compared with single-glazing PV/T," Energy, Elsevier, vol. 235(C).
    17. Yu, Min & Chen, Fucheng & Zhou, Jinzhi & Yuan, Yanping & Fan, Yi & Li, Guiqiang & Zhao, Xudong & Wang, Zhangyuan & Li, Jing & Zheng, Siming, 2022. "Experimental investigation of a novel vertical loop-heat-pipe PV/T heat and power system under different height differences," Energy, Elsevier, vol. 254(PA).
    18. Tariq, Rasikh & Xamán, J. & Bassam, A. & Ricalde, Luis J. & Soberanis, M.A. Escalante, 2020. "Multidimensional assessment of a photovoltaic air collector integrated phase changing material considering Mexican climatic conditions," Energy, Elsevier, vol. 209(C).
    19. Wen, Xin & Ji, Jie & Li, Zhaomeng & Song, Zhiying, 2022. "Performance analysis of a concentrated system with series photovoltaic/thermal module and solar thermal collector integrated with PCM and TEG," Energy, Elsevier, vol. 249(C).
    20. Wen, Xin & Ji, Jie & Song, Zhiying, 2021. "Performance comparison of two micro-channel heat pipe LFPV/T systems plus thermoelectric generators with and without aerogel glazing," Energy, Elsevier, vol. 229(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:187:y:2022:i:c:p:257-270. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.