IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v133y2019icp593-605.html
   My bibliography  Save this article

Optimization design of a thermal protection structure for the solar array of stratospheric airships

Author

Listed:
  • Meng, Junhui
  • Liu, Siyu
  • Yao, Zhongbing
  • Lv, Mingyun

Abstract

Renewable power system using solar array is one of the most critical subsystems for stratospheric airships. It is important of thermal protection for the stratospheric airship, because excessive temperature of solar cell may reduce its conversion efficiency and age the envelope material underlaid solar cells. Multi-objective optimization of a thermal protection structure with heat dissipation and insulation layers for solar array of a stratospheric airship is performed in this paper. The optimization process is carried out by a Nondominated Sorting Genetic Algorithm to decrease the sensitivity toward weights or demand levels. The specific temperature difference, which indicates the ratio of temperature reduction and structure density, and the output power of solar array are used to present the optimization aims. Three geometric variables related to the number of fins, width ratio of fins and thickness ratio of dissipation and insulation layer are selected as the design variables. Pareto optimal fronts representing the trade-offs between the performance parameters are obtained at last and optimization results are compared with previous studies and the thermal protection effects and output power of the solar array are both more excellent. Furthermore, the simulation of the thermal protection structure with optimization parameters are carried out at last.

Suggested Citation

  • Meng, Junhui & Liu, Siyu & Yao, Zhongbing & Lv, Mingyun, 2019. "Optimization design of a thermal protection structure for the solar array of stratospheric airships," Renewable Energy, Elsevier, vol. 133(C), pages 593-605.
  • Handle: RePEc:eee:renene:v:133:y:2019:i:c:p:593-605
    DOI: 10.1016/j.renene.2018.10.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118312230
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.10.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Lanchuan & Li, Jun & Meng, Junhui & Du, Huafei & Lv, Mingyun & Zhu, Weiyu, 2018. "Thermal performance analysis of a high-altitude solar-powered hybrid airship," Renewable Energy, Elsevier, vol. 125(C), pages 890-906.
    2. Yang, Xixiang & Liu, Duoneng, 2017. "Renewable power system simulation and endurance analysis for stratospheric airships," Renewable Energy, Elsevier, vol. 113(C), pages 1070-1076.
    3. Zhu, Weiyu & Xu, Yuanming & Du, Huafei & Zhang, Lanchuan & Li, Jun, 2018. "Transmittance optimization of solar array encapsulant for high-altitude airship," Renewable Energy, Elsevier, vol. 125(C), pages 796-805.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiang, Yi & Lv, Mingyun & Sun, Kangwen, 2022. "Effects of installation angle on the energy performance for photovoltaic cells during airship cruise flight," Energy, Elsevier, vol. 258(C).
    2. Jiang, Yi & Lv, Mingyun & Wang, Chuanzhi & Meng, Xiangrui & Ouyang, Siyue & Wang, Guodong, 2021. "Layout optimization of stratospheric balloon solar array based on energy production," Energy, Elsevier, vol. 229(C).
    3. Sun, Kangwen & Ji, Xinzhe & Shan, Chuan & Cheng, Dongji & Liang, Haoquan, 2024. "Extending the flight endurance of stratospheric airships using regenerative fuel cells-assisted pressure maintenance," Renewable Energy, Elsevier, vol. 227(C).
    4. Liu, Yang & Du, Huafei & Xu, Ziyuan & Sun, Kangwen & Lv, Mingyun, 2022. "Mission-based optimization of insulation layer for the solar array on the stratospheric airship," Renewable Energy, Elsevier, vol. 191(C), pages 318-329.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Yi & Lv, Mingyun & Qu, Zhipeng & Zhang, Lanchuan, 2020. "Performance evaluation for scientific balloon station-keeping strategies considering energy management strategy," Renewable Energy, Elsevier, vol. 156(C), pages 290-302.
    2. Liu, Yang & Du, Huafei & Xu, Ziyuan & Sun, Kangwen & Lv, Mingyun, 2022. "Mission-based optimization of insulation layer for the solar array on the stratospheric airship," Renewable Energy, Elsevier, vol. 191(C), pages 318-329.
    3. Jiang, Yi & Lv, Mingyun & Wang, Chuanzhi & Meng, Xiangrui & Ouyang, Siyue & Wang, Guodong, 2021. "Layout optimization of stratospheric balloon solar array based on energy production," Energy, Elsevier, vol. 229(C).
    4. Zhu, Weiyu & Xu, Yuanming & Du, Huafei & Li, Jun, 2019. "Thermal performance of high-altitude solar powered scientific balloon," Renewable Energy, Elsevier, vol. 135(C), pages 1078-1096.
    5. Sun, Kangwen & Ji, Xinzhe & Shan, Chuan & Cheng, Dongji & Liang, Haoquan, 2024. "Extending the flight endurance of stratospheric airships using regenerative fuel cells-assisted pressure maintenance," Renewable Energy, Elsevier, vol. 227(C).
    6. Shan, Chuan & Sun, Kangwen & Ji, Xinzhe & Cheng, Dongji, 2023. "A reconfiguration method for photovoltaic array of stratospheric airship based on multilevel optimization algorithm," Applied Energy, Elsevier, vol. 352(C).
    7. Liu, Yang & Sun, Kangwen & Xu, Ziyuan & Lv, Mingyun, 2022. "Energy efficiency assessment of photovoltaic array on the stratospheric airship under partial shading conditions," Applied Energy, Elsevier, vol. 325(C).
    8. Qiumin Dai & Daoming Xing & Xiande Fang & Yingjie Zhao, 2021. "Conceptual Design of an Energy System for High Altitude Airships Considering Thermal Effect," Energies, MDPI, vol. 14(14), pages 1-13, July.
    9. Kaiyin Song & Zhaojie Li & Yanlei Zhang & Xuwei Wang & Guoning Xu & Xiaojun Zhang, 2023. "Power Generation Calculation Model and Validation of Solar Array on Stratospheric Airships," Energies, MDPI, vol. 16(20), pages 1-17, October.
    10. González-Espasandín, Óscar & Leo, Teresa J. & Raso, Miguel A. & Navarro, Emilio, 2019. "Direct methanol fuel cell (DMFC) and H2 proton exchange membrane fuel (PEMFC/H2) cell performance under atmospheric flight conditions of Unmanned Aerial Vehicles," Renewable Energy, Elsevier, vol. 130(C), pages 762-773.
    11. Zhang, Lanchuan & Li, Jun & Meng, Junhui & Du, Huafei & Lv, Mingyun & Zhu, Weiyu, 2018. "Thermal performance analysis of a high-altitude solar-powered hybrid airship," Renewable Energy, Elsevier, vol. 125(C), pages 890-906.
    12. Paweł Górecki, 2022. "Compact Thermal Modeling of Power Semiconductor Devices with the Influence of Atmospheric Pressure," Energies, MDPI, vol. 15(10), pages 1-10, May.
    13. Zhang, Lanchuan & Li, Jun & Wu, Yifei & Lv, Mingyun, 2019. "Analysis of attitude planning and energy balance of stratospheric airship," Energy, Elsevier, vol. 183(C), pages 1089-1103.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:133:y:2019:i:c:p:593-605. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.