IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i14p4204-d592924.html
   My bibliography  Save this article

Conceptual Design of an Energy System for High Altitude Airships Considering Thermal Effect

Author

Listed:
  • Qiumin Dai

    (School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China)

  • Daoming Xing

    (School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China)

  • Xiande Fang

    (MIIT Key Laboratory of Aircraft Environment Control and Life Support, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

  • Yingjie Zhao

    (College of Energy and Power Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China)

Abstract

High altitude airships possess tremendous potential for long-endurance spot hovering platforms for both commercial and strategic applications. The energy system, which is mainly made up of solar array and regenerative fuel cell, is the key component of a high altitude airship. The thermal effect is a major factor that affects the performance of the energy system of long endurance stratospheric vehicles. In this paper, a conceptual design method focusing on the thermal and power characteristics of an energy system for stratospheric airships is proposed. The effect of thermal behavior of solar array on the energy system is analyzed. An optimized case is obtained on the consideration of power supply, thermal behaviors of helium and solar array. Results show that the maximum temperature difference of the solar array may be reduced by about 20 K and the mass of payload can be improved by up to 5%.

Suggested Citation

  • Qiumin Dai & Daoming Xing & Xiande Fang & Yingjie Zhao, 2021. "Conceptual Design of an Energy System for High Altitude Airships Considering Thermal Effect," Energies, MDPI, vol. 14(14), pages 1-13, July.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:14:p:4204-:d:592924
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/14/4204/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/14/4204/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tim Smith & Michele Trancossi & Dean Vucinic & Chris Bingham & Paul Stewart, 2017. "Primary and Albedo Solar Energy Sources for High Altitude Persistent Air Vehicle Operation," Energies, MDPI, vol. 10(4), pages 1-16, April.
    2. Xuwei Wang & Zhaojie Li & Yanlei Zhang, 2021. "Model for Predicting the Operating Temperature of Stratospheric Airship Solar Cells with a Support Vector Machine," Energies, MDPI, vol. 14(5), pages 1-14, February.
    3. Zhu, Weiyu & Xu, Yuanming & Du, Huafei & Zhang, Lanchuan & Li, Jun, 2018. "Transmittance optimization of solar array encapsulant for high-altitude airship," Renewable Energy, Elsevier, vol. 125(C), pages 796-805.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Yi & Lv, Mingyun & Wang, Chuanzhi & Meng, Xiangrui & Ouyang, Siyue & Wang, Guodong, 2021. "Layout optimization of stratospheric balloon solar array based on energy production," Energy, Elsevier, vol. 229(C).
    2. Yanhua Chang & Yi Liang, 2023. "Intelligent Risk Assessment of Ecological Agriculture Projects from a Vision of Low Carbon," Sustainability, MDPI, vol. 15(7), pages 1-21, March.
    3. Jiang, Yi & Lv, Mingyun & Qu, Zhipeng & Zhang, Lanchuan, 2020. "Performance evaluation for scientific balloon station-keeping strategies considering energy management strategy," Renewable Energy, Elsevier, vol. 156(C), pages 290-302.
    4. Paweł Górecki, 2022. "Compact Thermal Modeling of Power Semiconductor Devices with the Influence of Atmospheric Pressure," Energies, MDPI, vol. 15(10), pages 1-10, May.
    5. Zhu, Weiyu & Xu, Yuanming & Du, Huafei & Li, Jun, 2019. "Thermal performance of high-altitude solar powered scientific balloon," Renewable Energy, Elsevier, vol. 135(C), pages 1078-1096.
    6. Liu, Yang & Du, Huafei & Xu, Ziyuan & Sun, Kangwen & Lv, Mingyun, 2022. "Mission-based optimization of insulation layer for the solar array on the stratospheric airship," Renewable Energy, Elsevier, vol. 191(C), pages 318-329.
    7. Meng, Junhui & Liu, Siyu & Yao, Zhongbing & Lv, Mingyun, 2019. "Optimization design of a thermal protection structure for the solar array of stratospheric airships," Renewable Energy, Elsevier, vol. 133(C), pages 593-605.
    8. Kaiyin Song & Zhaojie Li & Yanlei Zhang & Xuwei Wang & Guoning Xu & Xiaojun Zhang, 2023. "Power Generation Calculation Model and Validation of Solar Array on Stratospheric Airships," Energies, MDPI, vol. 16(20), pages 1-17, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:14:p:4204-:d:592924. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.