IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v131y2019icp55-72.html
   My bibliography  Save this article

Utilization of residues from rice parboiling industries in southern Brazil for biogas and hydrogen-syngas generation: Heat, electricity and energy planning

Author

Listed:
  • Nadaleti, Willian Cézar

Abstract

Brazil is one of the world’s largest rice producers with trends for the growth of this sector. During the processing of the grain, high amounts of husk are generated, corresponding to 22% of its weight. On the other hand, in the process of parboiling, in turn, the final result is considerable volumes of effluent rich in organic matter. Thereby, this study demonstrates in an energetic, economic and environmental way the possibilities of using these residues for power generation in the southern Brazilian rice parboiling industries. Two scenarios are presented: the first, with the use of biogas and the second, with the use of hydrogen-rich syngas. A case study was made in one of these industries, where it was discussed in detail the energy potential coming from systems operating with a CHP genset, using hydrogen-rich syngas from the rice husks and the biogas from the anaerobic treatment of the effluents. The results have shown that it is possible to produce more than 2,17E+04 MWh of electricity just considering the use of the biogas generated. On the other hand, the use of syngas generates enough thermal energy to operate the entire industrial process, with a surplus of 53,3% in MWh/year.

Suggested Citation

  • Nadaleti, Willian Cézar, 2019. "Utilization of residues from rice parboiling industries in southern Brazil for biogas and hydrogen-syngas generation: Heat, electricity and energy planning," Renewable Energy, Elsevier, vol. 131(C), pages 55-72.
  • Handle: RePEc:eee:renene:v:131:y:2019:i:c:p:55-72
    DOI: 10.1016/j.renene.2018.07.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118307997
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.07.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kwofie, E.M. & Ngadi, M., 2016. "Sustainable energy supply for local rice parboiling in West Africa: The potential of rice husk," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1409-1418.
    2. Shackley, Simon & Carter, Sarah & Knowles, Tony & Middelink, Erik & Haefele, Stephan & Sohi, Saran & Cross, Andrew & Haszeldine, Stuart, 2012. "Sustainable gasification–biochar systems? A case-study of rice-husk gasification in Cambodia, Part I: Context, chemical properties, environmental and health and safety issues," Energy Policy, Elsevier, vol. 42(C), pages 49-58.
    3. Yoon, Sang Jun & Son, Yung-Il & Kim, Yong-Ku & Lee, Jae-Goo, 2012. "Gasification and power generation characteristics of rice husk and rice husk pellet using a downdraft fixed-bed gasifier," Renewable Energy, Elsevier, vol. 42(C), pages 163-167.
    4. Albina, D.O., 2006. "Emissions from multiple-spouted and spout-fluid fluidized beds using rice husks as fuel," Renewable Energy, Elsevier, vol. 31(13), pages 2152-2163.
    5. Mohammed Ahiduzzaman & Abul K. M. Sadrul Islam, 2009. "Energy Utilization and Environmental Aspects of Rice Processing Industries in Bangladesh," Energies, MDPI, vol. 2(1), pages 1-16, March.
    6. Kwofie, E.M. & Ngadi, M., 2017. "A review of rice parboiling systems, energy supply, and consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 465-472.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lourenço, Vitor Alves & Nadaleti, Willian Cézar & Vieira, Bruno Müller & Chua, Hui, 2021. "Methane production test of the anaerobic sludge from rice parboiling industries with the addition of biodiesel glycerol from rice bran oil in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    2. Schiochet Pinto, Luane & Pinheiro Neto, Daywes & de Leles Ferreira Filho, Anésio & Domingues, Elder Geraldo, 2020. "An alternative methodology for analyzing the risk and sensitivity of the economic viability for generating electrical energy with biogas from the anaerobic bio-digestion of vinasse," Renewable Energy, Elsevier, vol. 155(C), pages 1401-1410.
    3. Zheng, Jianpeng & Chen, Liubiao & Liu, Xuming & Zhu, Honglai & Zhou, Yuan & Wang, Junjie, 2020. "Thermodynamic optimization of composite insulation system with cold shield for liquid hydrogen zero-boil-off storage," Renewable Energy, Elsevier, vol. 147(P1), pages 824-832.
    4. Lourenço, Vitor Alves & Nadaleti, Willian Cézar & Vieira, Bruno Müller & Li, Hu, 2021. "Investigation of ethyl biodiesel via transesterification of rice bran oil: bioenergy from residual biomass in Pelotas, Rio Grande do Sul - Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kwofie, E.M. & Ngadi, M., 2016. "Sustainable energy supply for local rice parboiling in West Africa: The potential of rice husk," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1409-1418.
    2. Darmawan, Arif & Fitrianto, Anggoro Cahyo & Aziz, Muhammad & Tokimatsu, Koji, 2018. "Integrated system of rice production and electricity generation," Applied Energy, Elsevier, vol. 220(C), pages 672-680.
    3. Kwofie, E.M. & Ngadi, M., 2017. "A review of rice parboiling systems, energy supply, and consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 465-472.
    4. Bazargan, Alireza & Bazargan, Majid & McKay, Gordon, 2015. "Optimization of rice husk pretreatment for energy production," Renewable Energy, Elsevier, vol. 77(C), pages 512-520.
    5. Ndindeng, Sali Atanga & Wopereis, Marco & Sanyang, Sidi & Futakuchi, Koichi, 2019. "Evaluation of fan-assisted rice husk fuelled gasifier cookstoves for application in sub-Sahara Africa," Renewable Energy, Elsevier, vol. 139(C), pages 924-935.
    6. Ismail, T.M. & El-Salam, M. Abd, 2015. "Numerical and experimental studies on updraft gasifier HTAG," Renewable Energy, Elsevier, vol. 78(C), pages 484-497.
    7. Fanta Barry & Marie Sawadogo & Maïmouna Bologo (Traoré) & Igor W. K. Ouédraogo & Thomas Dogot, 2021. "Key Barriers to the Adoption of Biomass Gasification in Burkina Faso," Sustainability, MDPI, vol. 13(13), pages 1-14, June.
    8. Field, John L. & Tanger, Paul & Shackley, Simon J. & Haefele, Stephan M., 2016. "Agricultural residue gasification for low-cost, low-carbon decentralized power: An empirical case study in Cambodia," Applied Energy, Elsevier, vol. 177(C), pages 612-624.
    9. Kambo, Harpreet Singh & Dutta, Animesh, 2015. "A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 359-378.
    10. Shen, Yafei, 2017. "Rice husk silica derived nanomaterials for sustainable applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 453-466.
    11. Hend Dakhel Alhassany & Safaa Malik Abbas & Marcos Tostado-Véliz & David Vera & Salah Kamel & Francisco Jurado, 2022. "Review of Bioenergy Potential from the Agriculture Sector in Iraq," Energies, MDPI, vol. 15(7), pages 1-17, April.
    12. Wang, Lijun & Du, Xiaocheng & Xu, Lingfeng & Sun, Jiajun, 2020. "Numerical simulation of biomass gasification process and distribution mode in two-stage entrained flow gasifier," Renewable Energy, Elsevier, vol. 162(C), pages 1065-1075.
    13. Lim, Jeng Shiun & Abdul Manan, Zainuddin & Hashim, Haslenda & Wan Alwi, Sharifah Rafidah, 2013. "Towards an integrated, resource-efficient rice mill complex," Resources, Conservation & Recycling, Elsevier, vol. 75(C), pages 41-51.
    14. Imtiaz Anando, Ahmed & Ehsan, M Monjurul & Karim, Md Rezwanul & Bhuiyan, Arafat A. & Ahiduzzaman, Md & Karim, Azharul, 2023. "Thermochemical pretreatments to improve the fuel properties of rice husk: A review," Renewable Energy, Elsevier, vol. 215(C).
    15. Susastriawan, A.A.P. & Saptoadi, Harwin & Purnomo,, 2017. "Small-scale downdraft gasifiers for biomass gasification: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 989-1003.
    16. Md. Sanwar Hossain & Khondoker Ziaul Islam & Abdullah G. Alharbi & Md Shafiullah & Md. Rabiul Islam & Afef Fekih, 2022. "Optimal Design of a Hybrid Solar PV/BG-Powered Heterogeneous Network," Sustainability, MDPI, vol. 14(4), pages 1-29, February.
    17. Radenahmad, Nikdalila & Azad, Atia Tasfiah & Saghir, Muhammad & Taweekun, Juntakan & Bakar, Muhammad Saifullah Abu & Reza, Md Sumon & Azad, Abul Kalam, 2020. "A review on biomass derived syngas for SOFC based combined heat and power application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    18. Theeba Manickam & Gerard Cornelissen & Robert T. Bachmann & Illani Z. Ibrahim & Jan Mulder & Sarah E. Hale, 2015. "Biochar Application in Malaysian Sandy and Acid Sulfate Soils: Soil Amelioration Effects and Improved Crop Production over Two Cropping Seasons," Sustainability, MDPI, vol. 7(12), pages 1-15, December.
    19. Yoon, Sang Jun & Son, Yung-Il & Kim, Yong-Ku & Lee, Jae-Goo, 2012. "Gasification and power generation characteristics of rice husk and rice husk pellet using a downdraft fixed-bed gasifier," Renewable Energy, Elsevier, vol. 42(C), pages 163-167.
    20. S. D. S. Piyathissa & P. D. Kahandage & Namgay & Hao Zhang & Ryozo Noguchi & Tofael Ahamed, 2023. "Introducing a Novel Rice Husk Combustion Technology for Maximizing Energy and Amorphous Silica Production Using a Prototype Hybrid Rice Husk Burner to Minimize Environmental Impacts and Health Risk," Energies, MDPI, vol. 16(3), pages 1-19, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:131:y:2019:i:c:p:55-72. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.