IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v130y2019icp524-535.html
   My bibliography  Save this article

Comparative study of solar-powered underfloor heating system performance in distinctive climates

Author

Listed:
  • Karimi, Mohammad Sadjad
  • Fazelpour, Farivar
  • Rosen, Marc A.
  • Shams, Mehrzad

Abstract

According to the International Energy Agency, buildings are the largest energy-consuming sector globally, producing over one-third of greenhouse gas emissions in 2013. Renewable energies such as solar can be harnessed to fully or partially meet the energy demands of buildings. In this study, solar thermal collectors are used in a building to provide the hot water required for an underfloor heating system. Three cities in Iran, namely Tabriz, Tehran and Kish island, with distinctive climatic conditions are considered to gain a better understanding of the performance of solar-powered underfloor heating systems in different climates. Moreover, an economic analysis is conducted to assess the feasibility of the proposed system. DesignBuilder software is applied to simulate the energy performance of the building. The results indicate that the annual fuel consumption of the building with a solar collector located in Tehran, Tabriz and Kish island is reduced by 125.39, 303.58 and 1.41 MWh compared to that of without collector, respectively. The payback period of the system for Tehran, Tabriz and Kish Island is found to be 8.2, 9.4 and 12.1 years, respectively.

Suggested Citation

  • Karimi, Mohammad Sadjad & Fazelpour, Farivar & Rosen, Marc A. & Shams, Mehrzad, 2019. "Comparative study of solar-powered underfloor heating system performance in distinctive climates," Renewable Energy, Elsevier, vol. 130(C), pages 524-535.
  • Handle: RePEc:eee:renene:v:130:y:2019:i:c:p:524-535
    DOI: 10.1016/j.renene.2018.06.074
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118307262
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.06.074?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Jianhua & Gurney, Kevin Robert, 2016. "The variation of climate change impact on building energy consumption to building type and spatiotemporal scale," Energy, Elsevier, vol. 111(C), pages 137-153.
    2. Abd-ur-Rehman, Hafiz M. & Al-Sulaiman, Fahad A., 2016. "Optimum selection of solar water heating (SWH) systems based on their comparative techno-economic feasibility study for the domestic sector of Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 336-349.
    3. Al-Ugla, A.A. & El-Shaarawi, M.A.I. & Said, S.A.M. & Al-Qutub, A.M., 2016. "Techno-economic analysis of solar-assisted air-conditioning systems for commercial buildings in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1301-1310.
    4. Cassard, Hannah & Denholm, Paul & Ong, Sean, 2011. "Technical and economic performance of residential solar water heating in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3789-3800.
    5. Jangsten, M. & Kensby, J. & Dalenbäck, J.-O. & Trüschel, A., 2017. "Survey of radiator temperatures in buildings supplied by district heating," Energy, Elsevier, vol. 137(C), pages 292-301.
    6. Gunjo, Dawit Gudeta & Mahanta, Pinakeswar & Robi, P.S., 2017. "CFD and experimental investigation of flat plate solar water heating system under steady state condition," Renewable Energy, Elsevier, vol. 106(C), pages 24-36.
    7. Nematollahi, Omid & Kim, Kyung Chun, 2017. "A feasibility study of solar energy in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 566-579.
    8. Azizkhani, Mostafa & Vakili, Abdullah & Noorollahi, Younes & Naseri, Farzin, 2017. "Potential survey of photovoltaic power plants using Analytical Hierarchy Process (AHP) method in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1198-1206.
    9. Lee, Jongsung & Chang, Byungik & Aktas, Can & Gorthala, Ravi, 2016. "Economic feasibility of campus-wide photovoltaic systems in New England," Renewable Energy, Elsevier, vol. 99(C), pages 452-464.
    10. Ramakrishnan, Sayanthan & Wang, Xiaoming & Sanjayan, Jay & Wilson, John, 2017. "Thermal performance of buildings integrated with phase change materials to reduce heat stress risks during extreme heatwave events," Applied Energy, Elsevier, vol. 194(C), pages 410-421.
    11. Camargo Nogueira, Carlos Eduardo & Vidotto, Magno Luiz & Toniazzo, Fernando & Debastiani, Gilson, 2016. "Software for designing solar water heating systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 361-375.
    12. Araya, R. & Bustos, F. & Contreras, J. & Fuentes, A., 2017. "Life-cycle savings for a flat-plate solar water collector plant in Chile," Renewable Energy, Elsevier, vol. 112(C), pages 365-377.
    13. Fazelpour, Farivar & Markarian, Elin & Soltani, Nima, 2017. "Wind energy potential and economic assessment of four locations in Sistan and Balouchestan province in Iran," Renewable Energy, Elsevier, vol. 109(C), pages 646-667.
    14. Debbarma, Mary & Sudhakar, K. & Baredar, Prashant, 2017. "Thermal modeling, exergy analysis, performance of BIPV and BIPVT: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1276-1288.
    15. Yang, Zheng & Ghahramani, Ali & Becerik-Gerber, Burcin, 2016. "Building occupancy diversity and HVAC (heating, ventilation, and air conditioning) system energy efficiency," Energy, Elsevier, vol. 109(C), pages 641-649.
    16. Zhai, X.Q. & Yang, J.R. & Wang, R.Z., 2009. "Design and performance of the solar-powered floor heating system in a green building," Renewable Energy, Elsevier, vol. 34(7), pages 1700-1708.
    17. Xue, Jinlin, 2017. "Photovoltaic agriculture - New opportunity for photovoltaic applications in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1-9.
    18. Ramírez-Sagner, Gonzalo & Mata-Torres, Carlos & Pino, Alan & Escobar, Rodrigo A., 2017. "Economic feasibility of residential and commercial PV technology: The Chilean case," Renewable Energy, Elsevier, vol. 111(C), pages 332-343.
    19. Si, Binghui & Tian, Zhichao & Jin, Xing & Zhou, Xin & Tang, Peng & Shi, Xing, 2016. "Performance indices and evaluation of algorithms in building energy efficient design optimization," Energy, Elsevier, vol. 114(C), pages 100-112.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kang, Jia-Ning & Wei, Yi-Ming & Liu, Lan-Cui & Han, Rong & Yu, Bi-Ying & Wang, Jin-Wei, 2020. "Energy systems for climate change mitigation: A systematic review," Applied Energy, Elsevier, vol. 263(C).
    2. Fan, Yi & Zhao, Xudong & Li, Jing & Li, Guiqiang & Myers, Steve & Cheng, Yuanda & Badiei, Ali & Yu, Min & Golizadeh Akhlaghi, Yousef & Shittu, Samson & Ma, Xiaoli, 2020. "Economic and environmental analysis of a novel rural house heating and cooling system using a solar-assisted vapour injection heat pump," Applied Energy, Elsevier, vol. 275(C).
    3. Khosravi, Mohsen & Fazelpour, Farivar & Rosen, Marc A., 2019. "Improved application of a solar chimney concept in a two-story building: An enhanced geometry through a numerical approach," Renewable Energy, Elsevier, vol. 143(C), pages 569-585.
    4. Gür, Muhammed & Öztop, Hakan F. & Selimefendigil, Fatih, 2023. "Analysis of solar underfloor heating system assisted with nano enhanced phase change material for nearly zero energy buildings approach," Renewable Energy, Elsevier, vol. 218(C).
    5. Zhao, Juan & Yuan, Yanping & Haghighat, Fariborz & Lu, Jun & Feng, Guohui, 2019. "Investigation of energy performance and operational schemes of a Tibet-focused PCM-integrated solar heating system employing a dynamic energy simulation model," Energy, Elsevier, vol. 172(C), pages 141-154.
    6. Shazia Noor & Hadeed Ashraf & Muhammad Sultan & Zahid Mahmood Khan, 2020. "Evaporative Cooling Options for Building Air-Conditioning: A Comprehensive Study for Climatic Conditions of Multan (Pakistan)," Energies, MDPI, vol. 13(12), pages 1-23, June.
    7. Ren, Xiu-Hong & Wang, Peng-Lei & Zhang, Chun-Xiao & Song, Yong-Juan & Shang, Jin & Wang, Lin & Zhao, Fu-Yun, 2024. "Heat removal and ventilation limitations of the solar chimney attached with a built enclosure: Correlations of thermal Rayleigh numbers, port arrangements and discrete heating elements," Renewable Energy, Elsevier, vol. 221(C).
    8. Xiaomiao Liao & Wanjiang Wang & Yihuan Zhou, 2023. "Investigating the Energy-Saving Effectiveness of Envelope Retrofits and Photovoltaic Systems: A Case Study of a Hotel in Urumqi," Sustainability, MDPI, vol. 15(13), pages 1-22, June.
    9. Benzaama, M.H. & Rajaoarisoa, L.H. & Lekhal, M.C. & Menhoudj, S. & Mokhtari, A.M., 2021. "Thermal inertia and energy efficiency assessment of Direct Solar Floor system using a switching-linear model," Applied Energy, Elsevier, vol. 300(C).
    10. Mehran Dehghan & Carlos F. Pfeiffer & Elyas Rakhshani & Reza Bakhshi-Jafarabadi, 2021. "A Review on Techno-Economic Assessment of Solar Water Heating Systems in the Middle East," Energies, MDPI, vol. 14(16), pages 1-28, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mostafaeipour, Ali & Zarezade, Marjan & Goudarzi, Hossein & Rezaei-Shouroki, Mostafa & Qolipour, Mojtaba, 2017. "Investigating the factors on using the solar water heaters for dry arid regions: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 157-166.
    2. Rômulo de Oliveira Azevêdo & Paulo Rotela Junior & Luiz Célio Souza Rocha & Gianfranco Chicco & Giancarlo Aquila & Rogério Santana Peruchi, 2020. "Identification and Analysis of Impact Factors on the Economic Feasibility of Photovoltaic Energy Investments," Sustainability, MDPI, vol. 12(17), pages 1-40, September.
    3. Casanovas-Rubio, Maria del Mar & Armengou, Jaume, 2018. "Decision-making tool for the optimal selection of a domestic water-heating system considering economic, environmental and social criteria: Application to Barcelona (Spain)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 741-753.
    4. Wang, Yingli & Duan, Jialong & Zhao, Yuanyuan & Yuan, Haiwen & He, Benlin & Tang, Qunwei, 2018. "Film-type rain energy converters from conductive polymer/PtCo hybrids," Applied Energy, Elsevier, vol. 218(C), pages 317-324.
    5. Wu, Gang & Yang, Qichang & Zhang, Yi & Fang, Hui & Feng, Chaoqing & Zheng, Hongfei, 2020. "Energy and optical analysis of photovoltaic thermal integrated with rotary linear curved Fresnel lens inside a Chinese solar greenhouse," Energy, Elsevier, vol. 197(C).
    6. Li, Xiaoma & Zhou, Yuyu & Yu, Sha & Jia, Gensuo & Li, Huidong & Li, Wenliang, 2019. "Urban heat island impacts on building energy consumption: A review of approaches and findings," Energy, Elsevier, vol. 174(C), pages 407-419.
    7. López-Ochoa, Luis M. & Verichev, Konstantin & Las-Heras-Casas, Jesús & Carpio, Manuel, 2019. "Solar domestic hot water regulation in the Latin American residential sector with the implementation of the Energy Performance of Buildings Directive: The case of Chile," Energy, Elsevier, vol. 188(C).
    8. Li, Wenliang & Zhou, Yuyu & Cetin, Kristen & Eom, Jiyong & Wang, Yu & Chen, Gang & Zhang, Xuesong, 2017. "Modeling urban building energy use: A review of modeling approaches and procedures," Energy, Elsevier, vol. 141(C), pages 2445-2457.
    9. Jing, Gang & Cai, Wenjian & Zhang, Xin & Cui, Can & Yin, Xiaohong & Xian, Huacai, 2019. "An energy-saving oriented air balancing strategy for multi-zone demand-controlled ventilation system," Energy, Elsevier, vol. 172(C), pages 1053-1065.
    10. Drosou, Vassiliki & Kosmopoulos, Panos & Papadopoulos, Agis, 2016. "Solar cooling system using concentrating collectors for office buildings: A case study for Greece," Renewable Energy, Elsevier, vol. 97(C), pages 697-708.
    11. Caliskan, Hakan, 2015. "Thermodynamic and environmental analyses of biomass, solar and electrical energy options based building heating applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1016-1034.
    12. Munir Ali Elfarra & Mustafa Kaya, 2018. "Comparison of Optimum Spline-Based Probability Density Functions to Parametric Distributions for the Wind Speed Data in Terms of Annual Energy Production," Energies, MDPI, vol. 11(11), pages 1-15, November.
    13. Nie, Binjian & She, Xiaohui & Du, Zheng & Xie, Chunping & Li, Yongliang & He, Zhubing & Ding, Yulong, 2019. "System performance and economic assessment of a thermal energy storage based air-conditioning unit for transport applications," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    14. Østergaard, Dorte Skaarup & Svendsen, Svend, 2018. "Experience from a practical test of low-temperature district heating for space heating in five Danish single-family houses from the 1930s," Energy, Elsevier, vol. 159(C), pages 569-578.
    15. Song, Kwonsik & Kim, Sooyoung & Park, Moonseo & Lee, Hyun-Soo, 2017. "Energy efficiency-based course timetabling for university buildings," Energy, Elsevier, vol. 139(C), pages 394-405.
    16. Lingjun Wang & Jian Chen, 2024. "Economic and Social Benefits of Aquavoltaics: A Case Study from Jiangsu, China," Sustainability, MDPI, vol. 16(20), pages 1-17, October.
    17. Finn, Thomas & McKenzie, Paul, 2020. "A high-resolution suitability index for solar farm location in complex landscapes," Renewable Energy, Elsevier, vol. 158(C), pages 520-533.
    18. Murat Kunelbayev & Yedilkhan Amirgaliyev & Talgat Sundetov, 2022. "Improving the Efficiency of Environmental Temperature Control in Homes and Buildings," Energies, MDPI, vol. 15(23), pages 1-15, November.
    19. Abraham Nathan Zoure & Paolo Vincenzo Genovese, 2023. "Comparative Study of the Impact of Bio-Sourced and Recycled Insulation Materials on Energy Efficiency in Office Buildings in Burkina Faso," Sustainability, MDPI, vol. 15(2), pages 1-26, January.
    20. Gorjian, Shiva & Bousi, Erion & Özdemir, Özal Emre & Trommsdorff, Max & Kumar, Nallapaneni Manoj & Anand, Abhishek & Kant, Karunesh & Chopra, Shauhrat S., 2022. "Progress and challenges of crop production and electricity generation in agrivoltaic systems using semi-transparent photovoltaic technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:130:y:2019:i:c:p:524-535. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.