IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v54y2016icp1301-1310.html
   My bibliography  Save this article

Techno-economic analysis of solar-assisted air-conditioning systems for commercial buildings in Saudi Arabia

Author

Listed:
  • Al-Ugla, A.A.
  • El-Shaarawi, M.A.I.
  • Said, S.A.M.
  • Al-Qutub, A.M.

Abstract

Air-conditioning systems in Saudi Arabia consume approximately 65% of the electrical energy used in the building sector. Most air-conditioning systems in operation are of the vapor-compression variety. The use of solar energy to power such systems may save a large amount of electrical energy. Large-size commercial buildings in Saudi Arabia consume particularly high levels of electricity. This review compares three air-conditioning systems (conventional vapor-compression, solar LiBr–H2O absorption, and solar photovoltaic (PV) vapor-compression) using a techno-economic analysis for a typical large-size building under a constant cooling load during daytime. The study utilizes the two economic methodologies, payback period (PBP) and the net present value (NPV), for a commercial building in Khobar City, located in the eastern province of Saudi Arabia. The purpose of this paper is to exploit the results achieved in the analysis to develop viable recommendations in mitigating the electrical peak power demand in Saudi Arabia by utilizing solar cooling technology in commercial buildings as well as to establish the tangible economic benefits from applying such technology. The results show that a solar absorption system ismoreeconomically feasible than a solar PV-vapor-compression system. Moreover, the feasibility of both solar-powered systems improves as the size of the commercial building and the electricity rate increase.

Suggested Citation

  • Al-Ugla, A.A. & El-Shaarawi, M.A.I. & Said, S.A.M. & Al-Qutub, A.M., 2016. "Techno-economic analysis of solar-assisted air-conditioning systems for commercial buildings in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1301-1310.
  • Handle: RePEc:eee:rensus:v:54:y:2016:i:c:p:1301-1310
    DOI: 10.1016/j.rser.2015.10.047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115011260
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.10.047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hartmann, N. & Glueck, C. & Schmidt, F.P., 2011. "Solar cooling for small office buildings: Comparison of solar thermal and photovoltaic options for two different European climates," Renewable Energy, Elsevier, vol. 36(5), pages 1329-1338.
    2. Al-Alili, A. & Islam, M.D. & Kubo, I. & Hwang, Y. & Radermacher, R., 2012. "Modeling of a solar powered absorption cycle for Abu Dhabi," Applied Energy, Elsevier, vol. 93(C), pages 160-167.
    3. Hassan, H.Z. & Mohamad, A.A., 2012. "A review on solar cold production through absorption technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5331-5348.
    4. Mokhtar, Marwan & Ali, Muhammad Tauha & Bräuniger, Simon & Afshari, Afshin & Sgouridis, Sgouris & Armstrong, Peter & Chiesa, Matteo, 2010. "Systematic comprehensive techno-economic assessment of solar cooling technologies using location-specific climate data," Applied Energy, Elsevier, vol. 87(12), pages 3766-3778, December.
    5. Hang, Yin & Qu, Ming & Zhao, Fu, 2011. "Economical and environmental assessment of an optimized solar cooling system for a medium-sized benchmark office building in Los Angeles, California," Renewable Energy, Elsevier, vol. 36(2), pages 648-658.
    6. Garousi Farshi, L. & Mahmoudi, S.M.S. & Rosen, M.A., 2013. "Exergoeconomic comparison of double effect and combined ejector-double effect absorption refrigeration systems," Applied Energy, Elsevier, vol. 103(C), pages 700-711.
    7. Ullah, K.R. & Saidur, R. & Ping, H.W. & Akikur, R.K. & Shuvo, N.H., 2013. "A review of solar thermal refrigeration and cooling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 499-513.
    8. Karagiorgas, Michaelis & Tsoutsos, Theocharis & Drosou, Vassiliki & Pouffary, Stéphane & Pagano, Tulio & Lara, Germán Lopez & Melim Mendes, José Manuel, 2006. "HOTRES: renewable energies in the hotels. An extensive technical tool for the hotel industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(3), pages 198-224, June.
    9. Balaras, Constantinos A. & Grossman, Gershon & Henning, Hans-Martin & Infante Ferreira, Carlos A. & Podesser, Erich & Wang, Lei & Wiemken, Edo, 2007. "Solar air conditioning in Europe--an overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(2), pages 299-314, February.
    10. Shaahid, S.M. & Elhadidy, M.A., 2007. "Technical and economic assessment of grid-independent hybrid photovoltaic-diesel-battery power systems for commercial loads in desert environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(8), pages 1794-1810, October.
    11. Chidambaram, L.A. & Ramana, A.S. & Kamaraj, G. & Velraj, R., 2011. "Review of solar cooling methods and thermal storage options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3220-3228, August.
    12. Shekarchian, M. & Moghavvemi, M. & Motasemi, F. & Mahlia, T.M.I., 2011. "Energy savings and cost-benefit analysis of using compression and absorption chillers for air conditioners in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1950-1960, May.
    13. Karamangil, M.I. & Coskun, S. & Kaynakli, O. & Yamankaradeniz, N., 2010. "A simulation study of performance evaluation of single-stage absorption refrigeration system using conventional working fluids and alternatives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1969-1978, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luo, Xi & Liu, Yanfeng & Feng, Pingan & Gao, Yuan & Guo, Zhenxiang, 2021. "Optimization of a solar-based integrated energy system considering interaction between generation, network, and demand side," Applied Energy, Elsevier, vol. 294(C).
    2. Alammar, Ahmed A. & Rezk, Ahmed & Alaswad, Abed & Fernando, Julia & Olabi, A.G. & Decker, Stephanie & Ruhumuliza, Joseph & Gasana, Quénan, 2022. "The technical, economic, and environmental feasibility of a bioheat-driven adsorption cooling system for food cold storing: A case study of Rwanda," Energy, Elsevier, vol. 258(C).
    3. Drosou, Vassiliki & Kosmopoulos, Panos & Papadopoulos, Agis, 2016. "Solar cooling system using concentrating collectors for office buildings: A case study for Greece," Renewable Energy, Elsevier, vol. 97(C), pages 697-708.
    4. Yuan, Yu & Wu, Gang & Yang, Qichang & Cheng, Ruifeng & Tong, Yuxin & Zhang, Yi & Fang, Hui & Ma, Qianlei, 2021. "Experimental and analytical optical-thermal performance of evacuated cylindrical tube receiver for solar dish collector," Energy, Elsevier, vol. 234(C).
    5. Krarti, Moncef & Aldubyan, Mohammad, 2021. "Review analysis of COVID-19 impact on electricity demand for residential buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    6. Karimi, Mohammad Sadjad & Fazelpour, Farivar & Rosen, Marc A. & Shams, Mehrzad, 2019. "Comparative study of solar-powered underfloor heating system performance in distinctive climates," Renewable Energy, Elsevier, vol. 130(C), pages 524-535.
    7. Ali Alahmer & Xiaolin Wang & K. C. Amanul Alam, 2020. "Dynamic and Economic Investigation of a Solar Thermal-Driven Two-Bed Adsorption Chiller under Perth Climatic Conditions," Energies, MDPI, vol. 13(4), pages 1-19, February.
    8. Wikramanayake, Enakshi D. & Ozkan, Onur & Bahadur, Vaibhav, 2017. "Landfill gas-powered atmospheric water harvesting for oilfield operations in the United States," Energy, Elsevier, vol. 138(C), pages 647-658.
    9. Sajid Mehmood & Serguey A. Maximov & Hannah Chalmers & Daniel Friedrich, 2020. "Energetic, Economic and Environmental (3E) Assessment and Design of Solar-Powered HVAC Systems in Pakistan," Energies, MDPI, vol. 13(17), pages 1-25, August.
    10. Alahmer, Ali & Ajib, Salman & Wang, Xiaolin, 2019. "Comprehensive strategies for performance improvement of adsorption air conditioning systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 138-158.
    11. Wang, Baichao & Liu, Yanfeng & Wang, Dengjia & Song, Cong & Fu, Zhiguo & Zhang, Cong, 2024. "A review of the photothermal-photovoltaic energy supply system for building in solar energy enrichment zones," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    12. Wu, Gang & Yang, Qichang & Zhang, Yi & Fang, Hui & Feng, Chaoqing & Zheng, Hongfei, 2020. "Energy and optical analysis of photovoltaic thermal integrated with rotary linear curved Fresnel lens inside a Chinese solar greenhouse," Energy, Elsevier, vol. 197(C).
    13. Ioan Sarbu & Calin Sebarchievici, 2018. "A Comprehensive Review of Thermal Energy Storage," Sustainability, MDPI, vol. 10(1), pages 1-32, January.
    14. Khan, Mohammed Mumtaz A. & Saidur, R. & Al-Sulaiman, Fahad A., 2017. "A review for phase change materials (PCMs) in solar absorption refrigeration systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 105-137.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khan, Mohammed Mumtaz A. & Saidur, R. & Al-Sulaiman, Fahad A., 2017. "A review for phase change materials (PCMs) in solar absorption refrigeration systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 105-137.
    2. Siddiqui, M.U. & Said, S.A.M., 2015. "A review of solar powered absorption systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 93-115.
    3. Alobaid, Mohammad & Hughes, Ben & Calautit, John Kaiser & O’Connor, Dominic & Heyes, Andrew, 2017. "A review of solar driven absorption cooling with photovoltaic thermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 728-742.
    4. Shirazi, Ali & Taylor, Robert A. & White, Stephen D. & Morrison, Graham L., 2016. "Transient simulation and parametric study of solar-assisted heating and cooling absorption systems: An energetic, economic and environmental (3E) assessment," Renewable Energy, Elsevier, vol. 86(C), pages 955-971.
    5. Aliane, A. & Abboudi, S. & Seladji, C. & Guendouz, B., 2016. "An illustrated review on solar absorption cooling experimental studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 443-458.
    6. Cabeza, Luisa F. & Solé, Aran & Barreneche, Camila, 2017. "Review on sorption materials and technologies for heat pumps and thermal energy storage," Renewable Energy, Elsevier, vol. 110(C), pages 3-39.
    7. Nkwetta, Dan Nchelatebe & Sandercock, Jim, 2016. "A state-of-the-art review of solar air-conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1351-1366.
    8. Ullah, K.R. & Saidur, R. & Ping, H.W. & Akikur, R.K. & Shuvo, N.H., 2013. "A review of solar thermal refrigeration and cooling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 499-513.
    9. Khan, Jibran & Arsalan, Mudassar H., 2016. "Solar power technologies for sustainable electricity generation – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 414-425.
    10. Ghafoor, Abdul & Munir, Anjum, 2015. "Worldwide overview of solar thermal cooling technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 763-774.
    11. Zhai, X.Q. & Qu, M. & Li, Yue. & Wang, R.Z., 2011. "A review for research and new design options of solar absorption cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4416-4423.
    12. Allouche, Yosr & Varga, Szabolcs & Bouden, Chiheb & Oliveira, Armando C., 2017. "Dynamic simulation of an integrated solar-driven ejector based air conditioning system with PCM cold storage," Applied Energy, Elsevier, vol. 190(C), pages 600-611.
    13. Gupta, A. & Anand, Y. & Tyagi, S.K. & Anand, S., 2016. "Economic and thermodynamic study of different cooling options: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 164-194.
    14. Baby-Jean Robert Mungyeko Bisulandu & Rami Mansouri & Adrian Ilinca, 2023. "Diffusion Absorption Refrigeration Systems: An Overview of Thermal Mechanisms and Models," Energies, MDPI, vol. 16(9), pages 1-36, April.
    15. Ioan Sarbu & Calin Sebarchievici, 2018. "A Comprehensive Review of Thermal Energy Storage," Sustainability, MDPI, vol. 10(1), pages 1-32, January.
    16. Zeyghami, Mehdi & Goswami, D. Yogi & Stefanakos, Elias, 2015. "A review of solar thermo-mechanical refrigeration and cooling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1428-1445.
    17. Cabrera, F.J. & Fernández-García, A. & Silva, R.M.P. & Pérez-García, M., 2013. "Use of parabolic trough solar collectors for solar refrigeration and air-conditioning applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 103-118.
    18. Rosiek, Sabina & Batlles, Francisco Javier, 2013. "Renewable energy solutions for building cooling, heating and power system installed in an institutional building: Case study in southern Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 147-168.
    19. Mokri, Alaeddine & Aal Ali, Mona & Emziane, Mahieddine, 2013. "Solar energy in the United Arab Emirates: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 340-375.
    20. Rômulo de Oliveira Azevêdo & Paulo Rotela Junior & Luiz Célio Souza Rocha & Gianfranco Chicco & Giancarlo Aquila & Rogério Santana Peruchi, 2020. "Identification and Analysis of Impact Factors on the Economic Feasibility of Photovoltaic Energy Investments," Sustainability, MDPI, vol. 12(17), pages 1-40, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:54:y:2016:i:c:p:1301-1310. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.