IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v143y2019icp569-585.html
   My bibliography  Save this article

Improved application of a solar chimney concept in a two-story building: An enhanced geometry through a numerical approach

Author

Listed:
  • Khosravi, Mohsen
  • Fazelpour, Farivar
  • Rosen, Marc A.

Abstract

The energy consumption of buildings, which in large part provides comfortable conditions for occupants, in many countries is significant and increasing. Many factors need to be considered to establish comfortable conditions, and the presence of each is important for a building. One of these is ventilation which is achievable in two chief ways: mechanical ventilation and natural ventilation. Solar chimney systems enhance natural ventilation through buildings via buoyancy forces. In the present paper, an improved design for a solar chimney for a two-story building is investigated computationally. The dimensions of each floor are 8.5 m × 5 m × 3.65 m, for a floor volume of 155 m3. Initially, a two-dimensional computational fluid dynamics approach is utilized to specify the influence of changing diagonal angle on the ventilation rates of the floors and the relationship between geometric parameters of the system and ventilation rate. In the second phase of this paper, three-dimensional computational fluid dynamics approaches are used to computationally assess the improved design for the sloped solar chimney in order to determine the most effective geometry for inducing a high number of air changes per hour for the specific case. Also, the numerical approaches allow integration of the new modified geometry for a sloped solar chimney as well as assessment of the ventilation rate of the system and comparisons of the results with those for conventional geometries. The results demonstrate that changing the inclination angle of the titled surface is significant whenever the length of this part is sufficiently long. Also, it is shown that the improved geometry takes on a funnel form in order to eliminate the effects caused by dissipative flow phenomena as well as turbulence and vortices. Furthermore, it is observed that the new geometry enhances the natural ventilation rate of the building by 24% compared to conventional designs.

Suggested Citation

  • Khosravi, Mohsen & Fazelpour, Farivar & Rosen, Marc A., 2019. "Improved application of a solar chimney concept in a two-story building: An enhanced geometry through a numerical approach," Renewable Energy, Elsevier, vol. 143(C), pages 569-585.
  • Handle: RePEc:eee:renene:v:143:y:2019:i:c:p:569-585
    DOI: 10.1016/j.renene.2019.05.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119307025
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.05.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Katal, Fatemeh & Fazelpour, Farivar, 2018. "Multi-criteria evaluation and priority analysis of different types of existing power plants in Iran: An optimized energy planning system," Renewable Energy, Elsevier, vol. 120(C), pages 163-177.
    2. Tajeddin, Alireza & Fazelpour, Farivar, 2016. "Towards realistic design of wind dams: An innovative approach to enhance wind potential," Applied Energy, Elsevier, vol. 182(C), pages 282-298.
    3. Kharseh, Mohamad & Altorkmany, Lobna & Nordell, Bo, 2011. "Global warming’s impact on the performance of GSHP," Renewable Energy, Elsevier, vol. 36(5), pages 1485-1491.
    4. Thomas B. Johansson & Nebojsa Nakicenovic, 2012. "The Global Energy Assessment," Review of Environment, Energy and Economics - Re3, Fondazione Eni Enrico Mattei, October.
    5. Sabziparvar, Ali A. & Shetaee, H., 2007. "Estimation of global solar radiation in arid and semi-arid climates of East and West Iran," Energy, Elsevier, vol. 32(5), pages 649-655.
    6. Wei, Du & Qirong, Yang & Jincui, Zhang, 2011. "A study of the ventilation performance of a series of connected solar chimneys integrated with building," Renewable Energy, Elsevier, vol. 36(1), pages 265-271.
    7. Ferdinando Salata & Chiara Alippi & Anna Tarsitano & Iacopo Golasi & Massimo Coppi, 2015. "A First Approach to Natural Thermoventilation of Residential Buildings through Ventilation Chimneys Supplied by Solar Ponds," Sustainability, MDPI, vol. 7(7), pages 1-15, July.
    8. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9781107005198, October.
    9. Inglesi-Lotz, Roula & Dogan, Eyup, 2018. "The role of renewable versus non-renewable energy to the level of CO2 emissions a panel analysis of sub- Saharan Africa’s Βig 10 electricity generators," Renewable Energy, Elsevier, vol. 123(C), pages 36-43.
    10. Karimi, Mohammad Sadjad & Fazelpour, Farivar & Rosen, Marc A. & Shams, Mehrzad, 2019. "Comparative study of solar-powered underfloor heating system performance in distinctive climates," Renewable Energy, Elsevier, vol. 130(C), pages 524-535.
    11. Heiselberg, Per & Brohus, Henrik & Hesselholt, Allan & Rasmussen, Henrik & Seinre, Erkki & Thomas, Sara, 2009. "Application of sensitivity analysis in design of sustainable buildings," Renewable Energy, Elsevier, vol. 34(9), pages 2030-2036.
    12. Gholamalizadeh, Ehsan & Kim, Man-Hoe, 2016. "CFD (computational fluid dynamics) analysis of a solar-chimney power plant with inclined collector roof," Energy, Elsevier, vol. 107(C), pages 661-667.
    13. Harris, D.J. & Helwig, N., 2007. "Solar chimney and building ventilation," Applied Energy, Elsevier, vol. 84(2), pages 135-146, February.
    14. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9780521182935, October.
    15. Arce, J. & Jiménez, M.J. & Guzmán, J.D. & Heras, M.R. & Alvarez, G. & Xamán, J., 2009. "Experimental study for natural ventilation on a solar chimney," Renewable Energy, Elsevier, vol. 34(12), pages 2928-2934.
    16. El-Sebaii, A.A. & Al-Hazmi, F.S. & Al-Ghamdi, A.A. & Yaghmour, S.J., 2010. "Global, direct and diffuse solar radiation on horizontal and tilted surfaces in Jeddah, Saudi Arabia," Applied Energy, Elsevier, vol. 87(2), pages 568-576, February.
    17. Baird, George & Field, Carmeny, 2013. "Thermal comfort conditions in sustainable buildings – Results of a worldwide survey of users’ perceptions," Renewable Energy, Elsevier, vol. 49(C), pages 44-47.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ren, Xiu-Hong & Wang, Peng-Lei & Zhang, Chun-Xiao & Song, Yong-Juan & Shang, Jin & Wang, Lin & Zhao, Fu-Yun, 2024. "Heat removal and ventilation limitations of the solar chimney attached with a built enclosure: Correlations of thermal Rayleigh numbers, port arrangements and discrete heating elements," Renewable Energy, Elsevier, vol. 221(C).
    2. Pau Chung Leng & Mohd Hamdan Ahmad & Dilshan Remaz Ossen & Gabriel H.T. Ling & Samsiah Abdullah & Eeydzah Aminudin & Wai Loan Liew & Weng Howe Chan, 2019. "The Impact of Air Well Geometry in a Malaysian Single Storey Terraced House," Sustainability, MDPI, vol. 11(20), pages 1-35, October.
    3. Pau Chung Leng & Gabriel Hoh Teck Ling & Mohd Hamdan Ahmad & Dilshan Remaz Ossen & Eeydzah Aminudin & Weng Howe Chan & Dg Normaswanna Tawasil, 2020. "Thermal Performance of Single-Story Air-Welled Terraced House in Malaysia: A Field Measurement Approach," Sustainability, MDPI, vol. 13(1), pages 1-23, December.
    4. Ning Gao & Yao Yan & Rui Sun & Yonggang Lei, 2022. "Natural Ventilation Enhancement of a Roof Solar Chimney with Wind-Induced Channel," Energies, MDPI, vol. 15(17), pages 1-9, September.
    5. Ren, Xiu-Hong & Wang, Lei & Liu, Run-Zhe & Wang, Lin & Zhao, Fu-Yun, 2021. "Thermal stack airflows inside the solar chimney with discrete heat sources: Reversal flow regime defined by chimney inclination and thermal Rayleigh number," Renewable Energy, Elsevier, vol. 163(C), pages 342-356.
    6. Sengupta, Ayan & Mishra, Dipti Prasad & Sarangi, Shailesh Kumar, 2022. "Computational performance analysis of a solar chimney using surface modifications of the absorber plate," Renewable Energy, Elsevier, vol. 185(C), pages 1095-1109.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ondraczek, Janosch, 2014. "Are we there yet? Improving solar PV economics and power planning in developing countries: The case of Kenya," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 604-615.
    2. Holmatov, B. & Hoekstra, A.Y. & Krol, M.S., 2019. "Land, water and carbon footprints of circular bioenergy production systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 224-235.
    3. Fei Teng & Frank Jotzo, 2014. "Reaping the Economic Benefits of Decarbonization for China," China & World Economy, Institute of World Economics and Politics, Chinese Academy of Social Sciences, vol. 22(5), pages 37-54, September.
    4. Brand-Correa, Lina I. & Steinberger, Julia K., 2017. "A Framework for Decoupling Human Need Satisfaction From Energy Use," Ecological Economics, Elsevier, vol. 141(C), pages 43-52.
    5. Aurélie Méjean & Franck Lecocq & Yacob Mulugetta, 2015. "Equity, burden sharing and development pathways: reframing international climate negotiations," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 15(4), pages 387-402, November.
    6. Montira J. Pongsiri & Andrea M. Bassi, 2021. "A Systems Understanding Underpins Actions at the Climate and Health Nexus," IJERPH, MDPI, vol. 18(5), pages 1-15, March.
    7. Adinda Franky Nelwan & Rinaldy Dalimi & Chairul Hudaya, 2021. "A New Formula to Quantify the National Energy Security of the World s Top Ten Most Populous Nations," International Journal of Energy Economics and Policy, Econjournals, vol. 11(1), pages 394-406.
    8. Sachs, Julia & Moya, Diego & Giarola, Sara & Hawkes, Adam, 2019. "Clustered spatially and temporally resolved global heat and cooling energy demand in the residential sector," Applied Energy, Elsevier, vol. 250(C), pages 48-62.
    9. Paoli, Leonardo & Lupton, Richard C. & Cullen, Jonathan M., 2018. "Useful energy balance for the UK: An uncertainty analysis," Applied Energy, Elsevier, vol. 228(C), pages 176-188.
    10. Alhamwi, Alaa & Medjroubi, Wided & Vogt, Thomas & Agert, Carsten, 2019. "Development of a GIS-based platform for the allocation and optimisation of distributed storage in urban energy systems," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    11. Vaillancourt, Kathleen & Bahn, Olivier & Frenette, Erik & Sigvaldason, Oskar, 2017. "Exploring deep decarbonization pathways to 2050 for Canada using an optimization energy model framework," Applied Energy, Elsevier, vol. 195(C), pages 774-785.
    12. Aydin, Yusuf Cihat & Mirzaei, Parham A. & Akhavannasab, Sanam, 2019. "On the relationship between building energy efficiency, aesthetic features and marketability: Toward a novel policy for energy demand reduction," Energy Policy, Elsevier, vol. 128(C), pages 593-606.
    13. Dincer, Ibrahim & Acar, Canan, 2017. "Smart energy systems for a sustainable future," Applied Energy, Elsevier, vol. 194(C), pages 225-235.
    14. Mundaca, Luis & Román, Rocio & Cansino, José M., 2015. "Towards a Green Energy Economy? A macroeconomic-climate evaluation of Sweden’s CO2 emissions," Applied Energy, Elsevier, vol. 148(C), pages 196-209.
    15. Peter Berrill & T. Reed Miller & Yasushi Kondo & Edgar G. Hertwich, 2020. "Capital in the American carbon, energy, and material footprint," Journal of Industrial Ecology, Yale University, vol. 24(3), pages 589-600, June.
    16. Iva Kolenković Močilac & Marko Cvetković & Bruno Saftić & David Rukavina, 2022. "Porosity and Permeability Model of a Regionally Extending Unit (Upper Miocene Sandstones of the Western Part of Sava Depression, Croatia) Based on Vintage Well Data," Energies, MDPI, vol. 15(16), pages 1-18, August.
    17. Wang, Qiang & Lin, Jian & Zhou, Kan & Fan, Jie & Kwan, Mei-Po, 2020. "Does urbanization lead to less residential energy consumption? A comparative study of 136 countries," Energy, Elsevier, vol. 202(C).
    18. Sijm, Jos & Lehmann, Paul & Chewpreecha, Unnada & Gawel, Erik & Mercure, Jean-Francois & Pollitt, Hector & Strunz, Sebastian, 2014. "EU climate and energy policy beyond 2020: Are additional targets and instruments for renewables economically reasonable?," UFZ Discussion Papers 3/2014, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    19. Mishra, Gouri Shankar & Zakerinia, Saleh & Yeh, Sonia & Teter, Jacob & Morrison, Geoff, 2014. "Mitigating climate change: Decomposing the relative roles of energy conservation, technological change, and structural shift," Energy Economics, Elsevier, vol. 44(C), pages 448-455.
    20. Pablo-Romero, María del P. & Sánchez-Braza, Antonio, 2015. "Productive energy use and economic growth: Energy, physical and human capital relationships," Energy Economics, Elsevier, vol. 49(C), pages 420-429.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:143:y:2019:i:c:p:569-585. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.