IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v126y2018icp524-536.html
   My bibliography  Save this article

An analysis of harmonic heating in smart buildings and distribution network implications with increasing non-linear (domestic) load and embedded generation

Author

Listed:
  • Chandran, Chittesh Veni
  • Sunderland, Keith
  • Basu, Malabika

Abstract

Harmonic distortion is generally not taken into account within domestic installations and the associated wiring systems, as its potential is considered sufficiently small to be neglected. Standards to limit harmonic manifestations in the low voltage (LV) network are available, but these can be breached as a consequence of advancements in power electronics in some modern household devices contributing higher levels of harmonic distortion than permitted. While these devices individually might not be considered serious in terms of system level harmonic distortion manifestations, electrical equipment failures and insulation failures - increasingly being derived from harmonic cable heating - suggest a different story. A 10% increase in THD in a circuit will result in an increase of 10% in cable heat. Recently, attempts have been made to offer harmonic derating factors for building electrical circuit design in BS7671, but this approach currently prioritizes large power devices. This article explores the need for harmonic considerations during the design stage of electrical services engineering projects. Best practice suggestions, in the context of the dissemination of heat caused by harmonics related to household load deployments/configurations, are also provided based on the analysis conducted with real household data. This is further extended to a practical distribution network where the effect of harmonic heating at the network level is explored. The results suggest that the harmonics in the distribution network can amass to cause a cumulative effect on the network. Furthermore, it can be observed from the results that in a distribution network containing (domestic) solar photo voltaic (PV) systems, the harmonic heating issue can be reduced. This benefit is not without consequence however, as increasing PV penetration does not reduce the harmonic content of the overall system and therefore presents a further concern that may need to be addressed in due time.

Suggested Citation

  • Chandran, Chittesh Veni & Sunderland, Keith & Basu, Malabika, 2018. "An analysis of harmonic heating in smart buildings and distribution network implications with increasing non-linear (domestic) load and embedded generation," Renewable Energy, Elsevier, vol. 126(C), pages 524-536.
  • Handle: RePEc:eee:renene:v:126:y:2018:i:c:p:524-536
    DOI: 10.1016/j.renene.2018.03.081
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118303926
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.03.081?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fekete, Kresimir & Klaic, Zvonimir & Majdandzic, Ljubomir, 2012. "Expansion of the residential photovoltaic systems and its harmonic impact on the distribution grid," Renewable Energy, Elsevier, vol. 43(C), pages 140-148.
    2. Guerrero-Rodríguez, N.F. & Rey-Boué, Alexis B. & Herrero-de Lucas, Luis C. & Martinez-Rodrigo, Fernando, 2015. "Control and synchronization algorithms for a grid-connected photovoltaic system under harmonic distortions, frequency variations and unbalances," Renewable Energy, Elsevier, vol. 80(C), pages 380-395.
    3. Kalair, A. & Abas, N. & Kalair, A.R. & Saleem, Z. & Khan, N., 2017. "Review of harmonic analysis, modeling and mitigation techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1152-1187.
    4. Tovilović, Duško M. & LJ. Rajaković, Nikola, 2015. "The simultaneous impact of photovoltaic systems and plug-in electric vehicles on the daily load and voltage profiles and the harmonic voltage distortions in urban distribution systems," Renewable Energy, Elsevier, vol. 76(C), pages 454-464.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xie, Xiangmin & Chen, Daolian, 2022. "Data-driven dynamic harmonic model for modern household appliances," Applied Energy, Elsevier, vol. 312(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Protopapadaki, Christina & Saelens, Dirk, 2017. "Heat pump and PV impact on residential low-voltage distribution grids as a function of building and district properties," Applied Energy, Elsevier, vol. 192(C), pages 268-281.
    2. Igual, R. & Medrano, C., 2020. "Research challenges in real-time classification of power quality disturbances applicable to microgrids: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    3. Manuel Jesús Hermoso-Orzáez & Alfonso Gago-Calderón & José Ignacio Rojas-Sola, 2017. "Power Quality and Energy Efficiency in the Pre-Evaluation of an Outdoor Lighting Renewal with Light-Emitting Diode Technology: Experimental Study and Amortization Analysis," Energies, MDPI, vol. 10(7), pages 1-13, June.
    4. Allard, Stéphane & Debusschere, Vincent & Mima, Silvana & Quoc, Tuan Tran & Hadjsaid, Nouredine & Criqui, Patrick, 2020. "Considering distribution grids and local flexibilities in the prospective development of the European power system by 2050," Applied Energy, Elsevier, vol. 270(C).
    5. Jung, Jaesung & Onen, Ahmet & Russell, Kevin & Broadwater, Robert P., 2015. "Local steady-state and quasi steady-state impact studies of high photovoltaic generation penetration in power distribution circuits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 569-583.
    6. Nien-Che Yang & Sun-Wei Liu, 2021. "Multi-Objective Teaching–Learning-Based Optimization with Pareto Front for Optimal Design of Passive Power Filters," Energies, MDPI, vol. 14(19), pages 1-24, October.
    7. Jamal, Taskin & Urmee, Tania & Calais, Martina & Shafiullah, GM & Carter, Craig, 2017. "Technical challenges of PV deployment into remote Australian electricity networks: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1309-1325.
    8. Hoarau, Quentin & Perez, Yannick, 2018. "Interactions between electric mobility and photovoltaic generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 510-522.
    9. Barote, L. & Marinescu, C., 2014. "Software method for harmonic content evaluation of grid connected converters from distributed power generation systems," Energy, Elsevier, vol. 66(C), pages 401-412.
    10. Matej Žnidarec & Zvonimir Klaić & Damir Šljivac & Boris Dumnić, 2019. "Harmonic Distortion Prediction Model of a Grid-Tie Photovoltaic Inverter Using an Artificial Neural Network," Energies, MDPI, vol. 12(5), pages 1-19, February.
    11. Yan, Jie & Zhang, Jing & Liu, Yongqian & Lv, Guoliang & Han, Shuang & Alfonzo, Ian Emmanuel Gonzalez, 2020. "EV charging load simulation and forecasting considering traffic jam and weather to support the integration of renewables and EVs," Renewable Energy, Elsevier, vol. 159(C), pages 623-641.
    12. Minwu Chen & Yinyu Chen & Mingchi Wei, 2019. "Modeling and Control of a Novel Hybrid Power Quality Compensation System for 25-kV Electrified Railway," Energies, MDPI, vol. 12(17), pages 1-23, August.
    13. Heba M. Abdullah & Rashad M. Kamel & Anas Tahir & Azzam Sleit & Adel Gastli, 2020. "The Simultaneous Impact of EV Charging and PV Inverter Reactive Power on the Hosting Distribution System’s Performance: A Case Study in Kuwait," Energies, MDPI, vol. 13(17), pages 1-22, August.
    14. Batas Bjelić, Ilija & Rajaković, Nikola, 2015. "Simulation-based optimization of sustainable national energy systems," Energy, Elsevier, vol. 91(C), pages 1087-1098.
    15. Xie, Xiangmin & Chen, Daolian, 2022. "Data-driven dynamic harmonic model for modern household appliances," Applied Energy, Elsevier, vol. 312(C).
    16. Rogger José Andrade-Cedeno & Jesús Alberto Pérez-Rodríguez & Carlos David Amaya-Jaramillo & Ciaddy Gina Rodríguez-Borges & Yolanda Eugenia Llosas-Albuerne & José David Barros-Enríquez, 2022. "Numerical Study of Constant Pressure Systems with Variable Speed Electric Pumps," Energies, MDPI, vol. 15(5), pages 1-22, March.
    17. Angel Arranz-Gimon & Angel Zorita-Lamadrid & Daniel Morinigo-Sotelo & Oscar Duque-Perez, 2021. "A Review of Total Harmonic Distortion Factors for the Measurement of Harmonic and Interharmonic Pollution in Modern Power Systems," Energies, MDPI, vol. 14(20), pages 1-38, October.
    18. Kharrazi, A. & Sreeram, V. & Mishra, Y., 2020. "Assessment techniques of the impact of grid-tied rooftop photovoltaic generation on the power quality of low voltage distribution network - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    19. Narciso Castro Charris & Vladimir Sousa Santos & Juan J. Cabello Eras & Jorge M. Mendoza Fandiño, 2024. "Assessment of the Energy Efficiency of Three-Phase Induction Motors Powered by A Photovoltaic System," International Journal of Energy Economics and Policy, Econjournals, vol. 14(3), pages 455-462, May.
    20. Patsalides, Minas & Efthymiou, Venizelos & Stavrou, Andreas & Georghiou, George E., 2016. "A generic transient PV system model for power quality studies," Renewable Energy, Elsevier, vol. 89(C), pages 526-542.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:126:y:2018:i:c:p:524-536. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.