IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v76y2015icp454-464.html
   My bibliography  Save this article

The simultaneous impact of photovoltaic systems and plug-in electric vehicles on the daily load and voltage profiles and the harmonic voltage distortions in urban distribution systems

Author

Listed:
  • Tovilović, Duško M.
  • LJ. Rajaković, Nikola

Abstract

Photovoltaic systems (PVSs) and plug-in electric vehicles (PEVs) are becoming increasingly common and expected to be further integrated into electric power distribution systems (EDSs) in the near future. In this paper, the combined effects of PVSs and PEVs on the feeder and transformer loads, voltage profiles and harmonic distortions of an urban area EDS are investigated. The results indicate that the simultaneous connection of PVSs and PEVs, at the correct ratio, can impact load reduction and produce a reduction in voltage variations while potentially resulting in an increase the total harmonic distortion of voltage (THDV). In addition, this paper presents changes in the characteristic daily load and voltage profiles and changes in the THDV of the system caused by the simultaneous operation of PVSs and PEVs. The test EDS with 19 nodes is based on a real EDS. Two seasons, summer and winter, and several different degrees of penetration of PVSs and PEVs were studied. We used a stochastic approach to model the loads, PVSs and PEVs based on data measured in real systems and data found in the literature.

Suggested Citation

  • Tovilović, Duško M. & LJ. Rajaković, Nikola, 2015. "The simultaneous impact of photovoltaic systems and plug-in electric vehicles on the daily load and voltage profiles and the harmonic voltage distortions in urban distribution systems," Renewable Energy, Elsevier, vol. 76(C), pages 454-464.
  • Handle: RePEc:eee:renene:v:76:y:2015:i:c:p:454-464
    DOI: 10.1016/j.renene.2014.11.065
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148114007952
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2014.11.065?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fekete, Kresimir & Klaic, Zvonimir & Majdandzic, Ljubomir, 2012. "Expansion of the residential photovoltaic systems and its harmonic impact on the distribution grid," Renewable Energy, Elsevier, vol. 43(C), pages 140-148.
    2. Hernandez, J. & Gordillo, G. & Vallejo, W., 2013. "Predicting the behavior of a grid-connected photovoltaic system from measurements of solar radiation and ambient temperature," Applied Energy, Elsevier, vol. 104(C), pages 527-537.
    3. Su, Wencong & Chow, Mo-Yuen, 2012. "Computational intelligence-based energy management for a large-scale PHEV/PEV enabled municipal parking deck," Applied Energy, Elsevier, vol. 96(C), pages 171-182.
    4. Singh, G.K., 2013. "Solar power generation by PV (photovoltaic) technology: A review," Energy, Elsevier, vol. 53(C), pages 1-13.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hung, Duong Quoc & Dong, Zhao Yang & Trinh, Hieu, 2016. "Determining the size of PHEV charging stations powered by commercial grid-integrated PV systems considering reactive power support," Applied Energy, Elsevier, vol. 183(C), pages 160-169.
    2. Morro-Mello, Igoor & Padilha-Feltrin, Antonio & Melo, Joel D. & Calviño, Aida, 2019. "Fast charging stations placement methodology for electric taxis in urban zones," Energy, Elsevier, vol. 188(C).
    3. Manito, Alex R.A. & Pinto, Aimé & Zilles, Roberto, 2016. "Evaluation of utility transformers' lifespan with different levels of grid-connected photovoltaic systems penetration," Renewable Energy, Elsevier, vol. 96(PA), pages 700-714.
    4. Heba M. Abdullah & Rashad M. Kamel & Anas Tahir & Azzam Sleit & Adel Gastli, 2020. "The Simultaneous Impact of EV Charging and PV Inverter Reactive Power on the Hosting Distribution System’s Performance: A Case Study in Kuwait," Energies, MDPI, vol. 13(17), pages 1-22, August.
    5. Hoarau, Quentin & Perez, Yannick, 2018. "Interactions between electric mobility and photovoltaic generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 510-522.
    6. Protopapadaki, Christina & Saelens, Dirk, 2017. "Heat pump and PV impact on residential low-voltage distribution grids as a function of building and district properties," Applied Energy, Elsevier, vol. 192(C), pages 268-281.
    7. Batas Bjelić, Ilija & Rajaković, Nikola, 2015. "Simulation-based optimization of sustainable national energy systems," Energy, Elsevier, vol. 91(C), pages 1087-1098.
    8. Yan, Jie & Zhang, Jing & Liu, Yongqian & Lv, Guoliang & Han, Shuang & Alfonzo, Ian Emmanuel Gonzalez, 2020. "EV charging load simulation and forecasting considering traffic jam and weather to support the integration of renewables and EVs," Renewable Energy, Elsevier, vol. 159(C), pages 623-641.
    9. Chandran, Chittesh Veni & Sunderland, Keith & Basu, Malabika, 2018. "An analysis of harmonic heating in smart buildings and distribution network implications with increasing non-linear (domestic) load and embedded generation," Renewable Energy, Elsevier, vol. 126(C), pages 524-536.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kumar, Sandip Ravi & Gafaro, Francisco & Daka, Andrew & Raturi, Atul, 2017. "Modelling and analysis of grid integration for high shares of solar PV in small isolated systems – A case of Kiribati," Renewable Energy, Elsevier, vol. 108(C), pages 589-597.
    2. Aste, Niccolò & Del Pero, Claudio & Leonforte, Fabrizio & Manfren, Massimiliano, 2013. "A simplified model for the estimation of energy production of PV systems," Energy, Elsevier, vol. 59(C), pages 503-512.
    3. Liu, Shen & Colson, Gregory & Hao, Na & Wetzstein, Michael, 2018. "Toward an optimal household solar subsidy: A social-technical approach," Energy, Elsevier, vol. 147(C), pages 377-387.
    4. Guan, Yanling & Zhang, Hao & Xiao, Bin & Zhou, Zhi & Yan, Xuzhou, 2017. "In-situ investigation of the effect of dust deposition on the performance of polycrystalline silicon photovoltaic modules," Renewable Energy, Elsevier, vol. 101(C), pages 1273-1284.
    5. Kamjoo, Azadeh & Maheri, Alireza & Putrus, Ghanim A., 2014. "Chance constrained programming using non-Gaussian joint distribution function in design of standalone hybrid renewable energy systems," Energy, Elsevier, vol. 66(C), pages 677-688.
    6. Tholkappiyan Ramachandran & Abdel-Hamid I. Mourad & Fathalla Hamed, 2022. "A Review on Solar Energy Utilization and Projects: Development in and around the UAE," Energies, MDPI, vol. 15(10), pages 1-27, May.
    7. Rawat, Rahul & Kaushik, S.C. & Lamba, Ravita, 2016. "A review on modeling, design methodology and size optimization of photovoltaic based water pumping, standalone and grid connected system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1506-1519.
    8. Dong, Liwei & Zuo, Jianyong & Wang, Tianpeng & Xue, Wenbin & Wang, Ping & Li, Jun & Yang, Fan, 2022. "Enhanced piezoelectric harvester for track vibration based on tunable broadband resonant methodology," Energy, Elsevier, vol. 254(PA).
    9. Premaratne Samaranayake & Upul Gunawardana & Michael Stokoe, 2023. "Kerbside Parking Assessment Using a Simulation Modelling Approach for Infrastructure Planning—A Metropolitan City Case Study," Sustainability, MDPI, vol. 15(4), pages 1-24, February.
    10. Ma, Tao & Zhao, Jiaxin & Li, Zhenpeng, 2018. "Mathematical modelling and sensitivity analysis of solar photovoltaic panel integrated with phase change material," Applied Energy, Elsevier, vol. 228(C), pages 1147-1158.
    11. Dingyi Lu & Yunqian Lu & Kexin Zhang & Chuyuan Zhang & Shao-Chao Ma, 2023. "An Application Designed for Guiding the Coordinated Charging of Electric Vehicles," Sustainability, MDPI, vol. 15(14), pages 1-16, July.
    12. Punia Sindhu, Sonal & Nehra, Vijay & Luthra, Sunil, 2016. "Recognition and prioritization of challenges in growth of solar energy using analytical hierarchy process: Indian outlook," Energy, Elsevier, vol. 100(C), pages 332-348.
    13. Bocca, Alberto & Chiavazzo, Eliodoro & Macii, Alberto & Asinari, Pietro, 2015. "Solar energy potential assessment: An overview and a fast modeling approach with application to Italy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 291-296.
    14. Kane, Aarti & Verma, Vishal & Singh, Bhim, 2017. "Optimization of thermoelectric cooling technology for an active cooling of photovoltaic panel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1295-1305.
    15. Waldemar Izdebski & Katarzyna Kosiorek, 2023. "Analysis and Evaluation of the Possibility of Electricity Production from Small Photovoltaic Installations in Poland," Energies, MDPI, vol. 16(2), pages 1-19, January.
    16. Premaratne Samaranayake & Upul Gunawardana, 2022. "Parking Assessment in the Context of Growing Construction Activity and Infrastructure Changes: Simulation of Impact Scenarios," Sustainability, MDPI, vol. 14(9), pages 1-28, April.
    17. Xuan, Qingdong & Li, Guiqiang & Lu, Yashun & Zhao, Bin & Zhao, Xudong & Pei, Gang, 2019. "The design, construction and experimental characterization of a novel concentrating photovoltaic/daylighting window for green building roof," Energy, Elsevier, vol. 175(C), pages 1138-1152.
    18. Allard, Stéphane & Debusschere, Vincent & Mima, Silvana & Quoc, Tuan Tran & Hadjsaid, Nouredine & Criqui, Patrick, 2020. "Considering distribution grids and local flexibilities in the prospective development of the European power system by 2050," Applied Energy, Elsevier, vol. 270(C).
    19. Kusakana, Kanzumba, 2014. "Techno-economic analysis of off-grid hydrokinetic-based hybrid energy systems for onshore/remote area in South Africa," Energy, Elsevier, vol. 68(C), pages 947-957.
    20. Jung, Jaesung & Onen, Ahmet & Russell, Kevin & Broadwater, Robert P., 2015. "Local steady-state and quasi steady-state impact studies of high photovoltaic generation penetration in power distribution circuits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 569-583.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:76:y:2015:i:c:p:454-464. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.