IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v126y2018icp475-484.html
   My bibliography  Save this article

Geographical comparison between wind power, solar power and demand for the German regions and data filling concepts

Author

Listed:
  • Renken, Volker
  • Sorg, Michael
  • Marschner, Volker
  • Gerdes, Lewin
  • Gerdes, Gerhard
  • Fischer, Andreas

Abstract

The rising penetration of renewable energies became an important issue in the German electricity sector within the past years. In order to plan the required infrastructure for the energy distribution, a detailed knowledge about the complete geographical and temporal power generation compared to the demand is crucial. However, the available data for the renewable power generation in Germany is insufficient due to the complexity of the energy system. For this reason, a comparison between the renewable power generation and the electricity demand is presented for 95 German zip code regions based on real input data with a sample time of 15 min from renewable energy generators. For enhancing the incomplete data, different model-based data filling methods using the data of neighboured regions or additional meteorological data are introduced and compared. As a result, a number of modelling methods, based either on a heuristic model, a wind speed model or a combination of both, has been investigated, leading to similar correlation coefficients of above 80%. Finally, the obtained data set is applied for an analysis with a high spatiotemporal resolution. For three use cases the resulting optimal flow of the inter-regional power transfers is calculated.

Suggested Citation

  • Renken, Volker & Sorg, Michael & Marschner, Volker & Gerdes, Lewin & Gerdes, Gerhard & Fischer, Andreas, 2018. "Geographical comparison between wind power, solar power and demand for the German regions and data filling concepts," Renewable Energy, Elsevier, vol. 126(C), pages 475-484.
  • Handle: RePEc:eee:renene:v:126:y:2018:i:c:p:475-484
    DOI: 10.1016/j.renene.2018.03.046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118303574
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.03.046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Steiner, Andrea & Köhler, Carmen & Metzinger, Isabel & Braun, Axel & Zirkelbach, Mathias & Ernst, Dominique & Tran, Peter & Ritter, Bodo, 2017. "Critical weather situations for renewable energies – Part A: Cyclone detection for wind power," Renewable Energy, Elsevier, vol. 101(C), pages 41-50.
    2. Jursa, René & Rohrig, Kurt, 2008. "Short-term wind power forecasting using evolutionary algorithms for the automated specification of artificial intelligence models," International Journal of Forecasting, Elsevier, vol. 24(4), pages 694-709.
    3. Reikard, Gordon & Robertson, Bryson & Bidlot, Jean-Raymond, 2015. "Combining wave energy with wind and solar: Short-term forecasting," Renewable Energy, Elsevier, vol. 81(C), pages 442-456.
    4. Kusiak, Andrew & Zheng, Haiyang & Song, Zhe, 2009. "On-line monitoring of power curves," Renewable Energy, Elsevier, vol. 34(6), pages 1487-1493.
    5. Olauson, Jon & Bergkvist, Mikael, 2015. "Modelling the Swedish wind power production using MERRA reanalysis data," Renewable Energy, Elsevier, vol. 76(C), pages 717-725.
    6. Widén, Joakim & Carpman, Nicole & Castellucci, Valeria & Lingfors, David & Olauson, Jon & Remouit, Flore & Bergkvist, Mikael & Grabbe, Mårten & Waters, Rafael, 2015. "Variability assessment and forecasting of renewables: A review for solar, wind, wave and tidal resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 356-375.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Colak, Ilhami & Sagiroglu, Seref & Yesilbudak, Mehmet, 2012. "Data mining and wind power prediction: A literature review," Renewable Energy, Elsevier, vol. 46(C), pages 241-247.
    2. Anthony Roy & François Auger & Florian Dupriez-Robin & Salvy Bourguet & Quoc Tuan Tran, 2018. "Electrical Power Supply of Remote Maritime Areas: A Review of Hybrid Systems Based on Marine Renewable Energies," Energies, MDPI, vol. 11(7), pages 1-27, July.
    3. Lingfors, D. & Widén, J., 2016. "Development and validation of a wide-area model of hourly aggregate solar power generation," Energy, Elsevier, vol. 102(C), pages 559-566.
    4. Kim, Sunwoo & Choi, Yechan & Park, Joungho & Adams, Derrick & Heo, Seongmin & Lee, Jay H., 2024. "Multi-period, multi-timescale stochastic optimization model for simultaneous capacity investment and energy management decisions for hybrid Micro-Grids with green hydrogen production under uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    5. Maria Taljegard & Lisa Göransson & Mikael Odenberger & Filip Johnsson, 2021. "To Represent Electric Vehicles in Electricity Systems Modelling—Aggregated Vehicle Representation vs. Individual Driving Profiles," Energies, MDPI, vol. 14(3), pages 1-25, January.
    6. Mikovits, Christian & Wetterlund, Elisabeth & Wehrle, Sebastian & Baumgartner, Johann & Schmidt, Johannes, 2021. "Stronger together: Multi-annual variability of hydrogen production supported by wind power in Sweden," Applied Energy, Elsevier, vol. 282(PB).
    7. Wasilewski, J. & Baczynski, D., 2017. "Short-term electric energy production forecasting at wind power plants in pareto-optimality context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 177-187.
    8. Cheng-Yu Ho & Ke-Sheng Cheng & Chi-Hang Ang, 2023. "Utilizing the Random Forest Method for Short-Term Wind Speed Forecasting in the Coastal Area of Central Taiwan," Energies, MDPI, vol. 16(3), pages 1-18, January.
    9. Yang, Weijia & Yang, Jiandong, 2019. "Advantage of variable-speed pumped storage plants for mitigating wind power variations: Integrated modelling and performance assessment," Applied Energy, Elsevier, vol. 237(C), pages 720-732.
    10. Gonzalez, Elena & Stephen, Bruce & Infield, David & Melero, Julio J., 2019. "Using high-frequency SCADA data for wind turbine performance monitoring: A sensitivity study," Renewable Energy, Elsevier, vol. 131(C), pages 841-853.
    11. Jean-Henry Ferrasse & Nandeeta Neerunjun & Hubert Stahn, 2021. "Managing intermittency in the electricity market," Working Papers halshs-03154612, HAL.
    12. Croonenbroeck, Carsten & Møller Dahl, Christian, 2014. "Accurate medium-term wind power forecasting in a censored classification framework," Discussion Papers 351, European University Viadrina Frankfurt (Oder), Department of Business Administration and Economics.
    13. Nuño, Edgar & Maule, Petr & Hahmann, Andrea & Cutululis, Nicolaos & Sørensen, Poul & Karagali, Ioanna, 2018. "Simulation of transcontinental wind and solar PV generation time series," Renewable Energy, Elsevier, vol. 118(C), pages 425-436.
    14. Ying-Yi Hong & Ti-Hsuan Yu & Ching-Yun Liu, 2013. "Hour-Ahead Wind Speed and Power Forecasting Using Empirical Mode Decomposition," Energies, MDPI, vol. 6(12), pages 1-16, November.
    15. Matti Koivisto & Kaushik Das & Feng Guo & Poul Sørensen & Edgar Nuño & Nicolaos Cutululis & Petr Maule, 2019. "Using time series simulation tools for assessing the effects of variable renewable energy generation on power and energy systems," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(3), May.
    16. Stetco, Adrian & Dinmohammadi, Fateme & Zhao, Xingyu & Robu, Valentin & Flynn, David & Barnes, Mike & Keane, John & Nenadic, Goran, 2019. "Machine learning methods for wind turbine condition monitoring: A review," Renewable Energy, Elsevier, vol. 133(C), pages 620-635.
    17. Maolin Cheng & Jiano Li & Yun Liu & Bin Liu, 2020. "Forecasting Clean Energy Consumption in China by 2025: Using Improved Grey Model GM (1, N)," Sustainability, MDPI, vol. 12(2), pages 1-20, January.
    18. Becker, Raik & Thrän, Daniela, 2017. "Completion of wind turbine data sets for wind integration studies applying random forests and k-nearest neighbors," Applied Energy, Elsevier, vol. 208(C), pages 252-262.
    19. Ian M. Trotter & Torjus F. Bolkesj{o} & Eirik O. J{aa}stad & Jon Gustav Kirkerud, 2021. "Increased Electrification of Heating and Weather Risk in the Nordic Power System," Papers 2112.02893, arXiv.org.
    20. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:126:y:2018:i:c:p:475-484. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.