IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v151y2020icp598-603.html
   My bibliography  Save this article

Enhancement of productivity of Chlorella pyrenoidosa lipids for biodiesel using co-culture with ammonia-oxidizing bacteria in municipal wastewater

Author

Listed:
  • Zhou, Xu
  • Jin, Wenbiao
  • Wang, Qing
  • Guo, Shida
  • Tu, Renjie
  • Han, Song-fang
  • Chen, Chuan
  • Xie, Guojun
  • Qu, Fanqi
  • Wang, Qilin

Abstract

As one of the most promising renewable energy, microalgal biodiesel has been widely studied worldwide. However, the low-efficiency of conventional microalgae cultivation procedures restrict the development of microalgae biodiesel production. Microalgal-bacterial symbiosis could both enhance the growth of algal-bacterial culture and promote the removal and conversion of wastewater nutrients. In this study, three strains of high-efficient heterotrophic ammonia-oxidizing bacteria JN1, FN3, and FN5 were screened from municipal wastewater treatment system with over 80% degradation rates of 50 mg/L ammonia-nitrogen (NH3–N) in 24 h. Among them, FN5, belonging to Kluyvera sp., had the optimum effect on enhancing growth of oil-rich microalga Chlorella pyrenoidosa. In stationary phase, the biomass and lipid content of Chlorella pyrenoidosa was14.8% and 13.6% higher than the blank control tests without FN5. In contrast, JN1 and FN3 failed to enhance the growth of Chlorella pyrenoidosa. After the cultivation of Chlorella pyrenoidosa-FN5 consortia in municipal wastewater, the degradation rate of NH3–N was up to 91% while the content of microalgae biomass and lipid attained 0.35 g/L and 39.0%. The Saturated fatty acids (SFAs), Monounsaturated fatty acids (MUFAs), and Polyunsaturated fatty acids (PUFAs) were 43.9, 37.1 and 19.0%, respectively, which had the potential for biodiesel production after pretreatment.

Suggested Citation

  • Zhou, Xu & Jin, Wenbiao & Wang, Qing & Guo, Shida & Tu, Renjie & Han, Song-fang & Chen, Chuan & Xie, Guojun & Qu, Fanqi & Wang, Qilin, 2020. "Enhancement of productivity of Chlorella pyrenoidosa lipids for biodiesel using co-culture with ammonia-oxidizing bacteria in municipal wastewater," Renewable Energy, Elsevier, vol. 151(C), pages 598-603.
  • Handle: RePEc:eee:renene:v:151:y:2020:i:c:p:598-603
    DOI: 10.1016/j.renene.2019.11.063
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119317501
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.11.063?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jose R. Contreras-Angulo & Teresa M. Mata & Sara P. Cuellar-Bermudez & Nidia S. Caetano & Rashmi Chandra & J. Saul Garcia-Perez & Koenraad Muylaert & Roberto Parra-Saldivar, 2019. "Symbiotic Co-Culture of Scenedesmus sp. and Azospirillum brasilense on N-Deficient Media with Biomass Production for Biofuels," Sustainability, MDPI, vol. 11(3), pages 1-16, January.
    2. Amaro, Helena M. & Macedo, Ângela C. & Malcata, F. Xavier, 2012. "Microalgae: An alternative as sustainable source of biofuels?," Energy, Elsevier, vol. 44(1), pages 158-166.
    3. Abomohra, Abd El-Fatah & Jin, Wenbiao & Sagar, Vikram & Ismail, Gehan A., 2018. "Optimization of chemical flocculation of Scenedesmus obliquus grown on municipal wastewater for improved biodiesel recovery," Renewable Energy, Elsevier, vol. 115(C), pages 880-886.
    4. Ebrahimian, Atefeh & Kariminia, Hamid-Reza & Vosoughi, Manouchehr, 2014. "Lipid production in mixotrophic cultivation of Chlorella vulgaris in a mixture of primary and secondary municipal wastewater," Renewable Energy, Elsevier, vol. 71(C), pages 502-508.
    5. Han, Song-Fang & Jin, Wenbiao & Yang, Qian & El-Fatah Abomohra, Abd & Zhou, Xu & Tu, Renjie & Chen, Chuan & Xie, Guo-Jun & Wang, Qilin, 2019. "Application of pulse electric field pretreatment for enhancing lipid extraction from Chlorella pyrenoidosa grown in wastewater," Renewable Energy, Elsevier, vol. 133(C), pages 233-239.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiang, Liqun & Li, Yizhen & Pei, Haiyan, 2021. "Algal–bacterial consortia for bioproduct generation and wastewater treatment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    2. Leong, Yoong Kit & Chang, Jo-Shu, 2023. "Waste stream valorization-based low-carbon bioeconomy utilizing algae as a biorefinery platform," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    3. Liu, Mingyan & Yu, Ze & Jiang, Liqun & Hou, Qingjie & Xie, Zhen & Ma, Meng & Yu, Siteng & Pei, Haiyan, 2021. "Monosodium glutamate wastewater assisted seawater to increase lipid productivity in single-celled algae," Renewable Energy, Elsevier, vol. 179(C), pages 1793-1802.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Guangmin & Qiao, Lina & Zhang, Hong & Zhao, Dan & Su, Xudong, 2014. "The effects of illumination factors on the growth and HCO3− fixation of microalgae in an experiment culture system," Energy, Elsevier, vol. 78(C), pages 40-47.
    2. Al-Jabri, Hareb & Das, Probir & Khan, Shoyeb & AbdulQuadir, Mohammad & Thaher, Mehmoud Ibrahim & Hoekman, Kent & Hawari, Alaa H., 2022. "A comparison of bio-crude oil production from five marine microalgae – Using life cycle analysis," Energy, Elsevier, vol. 251(C).
    3. Cao, Bin & Wang, Shuang & Hu, Yamin & Abomohra, Abd El-Fatah & Qian, Lili & He, Zhixia & Wang, Qian & Uzoejinwa, Benjamin Bernard & Esakkimuthu, Sivakumar, 2019. "Effect of washing with diluted acids on Enteromorpha clathrata pyrolysis products: Towards enhanced bio-oil from seaweeds," Renewable Energy, Elsevier, vol. 138(C), pages 29-38.
    4. Emilia Neag & Zamfira Stupar & S. Andrada Maicaneanu & Cecilia Roman, 2023. "Advances in Biodiesel Production from Microalgae," Energies, MDPI, vol. 16(3), pages 1-18, January.
    5. Nugroho Adi Sasongko & Ryozo Noguchi & Junko Ito & Mikihide Demura & Sosaku Ichikawa & Mitsutoshi Nakajima & Makoto M. Watanabe, 2018. "Engineering Study of a Pilot Scale Process Plant for Microalgae-Oil Production Utilizing Municipal Wastewater and Flue Gases: Fukushima Pilot Plant," Energies, MDPI, vol. 11(7), pages 1-24, June.
    6. Nayak, Manoranjan & Rashid, Naim & Suh, William I. & Lee, Bongsoo & Chang, Yong Keun, 2019. "Performance evaluation of different cationic flocculants through pH modulation for efficient harvesting of Chlorella sp. HS2 and their impact on water reusability," Renewable Energy, Elsevier, vol. 136(C), pages 819-827.
    7. Beata Brzychczyk & Tomasz Hebda & Norbert Pedryc, 2020. "The Influence of Artificial Lighting Systems on the Cultivation of Algae: The Example of Chlorella vulgaris," Energies, MDPI, vol. 13(22), pages 1-14, November.
    8. Singh, Harshita & Varanasi, Jhansi L. & Banerjee, Srijoni & Das, Debabrata, 2019. "Production of carbohydrate enrich microalgal biomass as a bioenergy feedstock," Energy, Elsevier, vol. 188(C).
    9. Lin, Kuang C. & Lin, Yuan-Chung & Hsiao, Yi-Hsing, 2014. "Microwave plasma studies of Spirulina algae pyrolysis with relevance to hydrogen production," Energy, Elsevier, vol. 64(C), pages 567-574.
    10. Esakkimuthu, Sivakumar & Krishnamurthy, Venkatesan & Wang, Shuang & El-Fatah Abomohra, Abd & Shanmugam, Sabarathinam & Ramakrishnan, Sankar Ganesh & Subrmaniam, Sadhasivam & K, Swaminathan, 2019. "Simultaneous induction of biomass and lipid production in Tetradesmus obliquus BPL16 through polysorbate supplementation," Renewable Energy, Elsevier, vol. 140(C), pages 807-815.
    11. Hwang, Jae-Hoon & Kabra, Akhil N. & Kim, Jung Rae & Jeon, Byong-Hun, 2014. "Photoheterotrophic microalgal hydrogen production using acetate- and butyrate-rich wastewater effluent," Energy, Elsevier, vol. 78(C), pages 887-894.
    12. Yadala, Soumya & Cremaschi, Selen, 2014. "Design and optimization of artificial cultivation units for algae production," Energy, Elsevier, vol. 78(C), pages 23-39.
    13. Sibi G, 2018. "Microalgae Biomass Harvesting Based on pH Induced, Chemical and Bioflocculants Mediated Flocculation-A Review," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 11(3), pages 70-74, May.
    14. Huang, Hua-jun & Yuan, Xing-zhong & Zhu, Hui-na & Li, Hui & Liu, Yan & Wang, Xue-li & Zeng, Guang-ming, 2013. "Comparative studies of thermochemical liquefaction characteristics of microalgae, lignocellulosic biomass and sewage sludge," Energy, Elsevier, vol. 56(C), pages 52-60.
    15. Mohseni, Shayan & Pishvaee, Mir Saman & Sahebi, Hadi, 2016. "Robust design and planning of microalgae biomass-to-biodiesel supply chain: A case study in Iran," Energy, Elsevier, vol. 111(C), pages 736-755.
    16. Chen, Guanyi & Zhao, Liu & Qi, Yun, 2015. "Enhancing the productivity of microalgae cultivated in wastewater toward biofuel production: A critical review," Applied Energy, Elsevier, vol. 137(C), pages 282-291.
    17. López-González, D. & Fernandez-Lopez, M. & Valverde, J.L. & Sanchez-Silva, L., 2014. "Pyrolysis of three different types of microalgae: Kinetic and evolved gas analysis," Energy, Elsevier, vol. 73(C), pages 33-43.
    18. Collet, Pierre & Lardon, Laurent & Hélias, Arnaud & Bricout, Stéphanie & Lombaert-Valot, Isabelle & Perrier, Béatrice & Lépine, Olivier & Steyer, Jean-Philippe & Bernard, Olivier, 2014. "Biodiesel from microalgae – Life cycle assessment and recommendations for potential improvements," Renewable Energy, Elsevier, vol. 71(C), pages 525-533.
    19. Abomohra, Abd El-Fatah & Sheikh, Huda M.A. & El-Naggar, Amal H. & Wang, Qingyuan, 2021. "Microwave vacuum co-pyrolysis of waste plastic and seaweeds for enhanced crude bio-oil recovery: Experimental and feasibility study towards industrialization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    20. Kamil, Mohammed & Ramadan, Khalid M. & Olabi, Abdul Ghani & Al-Ali, Eman I. & Ma, Xiao & Awad, Omar I., 2020. "Economic, technical, and environmental viability of biodiesel blends derived from coffee waste," Renewable Energy, Elsevier, vol. 147(P1), pages 1880-1894.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:151:y:2020:i:c:p:598-603. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.