IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v131y2019icp788-799.html
   My bibliography  Save this article

Performance improvement and development of correlation for friction factor and heat transfer using computational fluid dynamics for ribbed triangular duct solar air heater

Author

Listed:
  • Kumar, Rajneesh
  • Kumar, Anoop
  • Goel, Varun

Abstract

Solar air heater (SAH) is a device used to convert sun radiations into heating applications. To improve its performance, the heat absorbing side of SAH is modified with the ribs called roughness. The flow characteristics and augmentation of heat due to square shaped ribs in SAH having triangular cross-sectional passage has been simulated using computational fluid dynamic (CFD) technique. The CFD simulations consisted of design and modeling of SAH. Two different roughness parameters has been considered in the analysis i.e. relative roughness pitch (P/e) and relative roughness height (e/D) and their value ranges from 5 to 13 (in four sets) and 0.013 to 0.05 (in four sets), respectively for Reynolds number varies from 3900 to 17900. Better augmentation of heat has been seen in SAH by providing ribs on the absorber plate. The highest improvement in heat transfer is seen of the order of 97% in P/e value of 10 and e/D value of 0.05 at Re of 17900. The thermohydraulic performance parameter (TPP) is also calculated and have highest value of 1.97 for P/e value of 10 and e/D value of 0.05 at Re of 17900. Correlation has been developed for both friction factor and Nusselt number based on observed results.

Suggested Citation

  • Kumar, Rajneesh & Kumar, Anoop & Goel, Varun, 2019. "Performance improvement and development of correlation for friction factor and heat transfer using computational fluid dynamics for ribbed triangular duct solar air heater," Renewable Energy, Elsevier, vol. 131(C), pages 788-799.
  • Handle: RePEc:eee:renene:v:131:y:2019:i:c:p:788-799
    DOI: 10.1016/j.renene.2018.07.078
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118308759
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.07.078?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alam, Tabish & Kim, Man-Hoe, 2016. "Numerical study on thermal hydraulic performance improvement in solar air heater duct with semi ellipse shaped obstacles," Energy, Elsevier, vol. 112(C), pages 588-598.
    2. Sahu, Mukesh Kumar & Prasad, Radha Krishna, 2016. "Exergy based performance evaluation of solar air heater with arc-shaped wire roughened absorber plate," Renewable Energy, Elsevier, vol. 96(PA), pages 233-243.
    3. Leung, C. W. & Wong, T. T. & Probert, S. D., 2001. "Enhanced forced-convection from ribbed or machine-roughened inner surfaces within triangular ducts," Applied Energy, Elsevier, vol. 69(2), pages 87-99, June.
    4. Hans, Vishavjeet Singh & Saini, R.P. & Saini, J.S., 2009. "Performance of artificially roughened solar air heaters--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1854-1869, October.
    5. Jin, Dongxu & Zuo, Jianguo & Quan, Shenglin & Xu, Shiming & Gao, Hao, 2017. "Thermohydraulic performance of solar air heater with staggered multiple V-shaped ribs on the absorber plate," Energy, Elsevier, vol. 127(C), pages 68-77.
    6. Kumar, Rajneesh & Varun, & Kumar, Anoop, 2016. "Thermal and fluid dynamic characteristics of flow through triangular cross-sectional duct: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 123-140.
    7. Chaube, Alok & Sahoo, P.K. & Solanki, S.C., 2006. "Analysis of heat transfer augmentation and flow characteristics due to rib roughness over absorber plate of a solar air heater," Renewable Energy, Elsevier, vol. 31(3), pages 317-331.
    8. Akpinar, Ebru Kavak & Koçyigit, Fatih, 2010. "Energy and exergy analysis of a new flat-plate solar air heater having different obstacles on absorber plates," Applied Energy, Elsevier, vol. 87(11), pages 3438-3450, November.
    9. Singh, Amritpal & Singh, Sukhmeet, 2017. "CFD investigation on roughness pitch variation in non-uniform cross-section transverse rib roughness on Nusselt number and friction factor characteristics of solar air heater duct," Energy, Elsevier, vol. 128(C), pages 109-127.
    10. Singh, Satyender & Dhiman, Prashant, 2016. "Thermal performance of double pass packed bed solar air heaters – A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1010-1031.
    11. Tanda, Giovanni, 2011. "Performance of solar air heater ducts with different types of ribs on the absorber plate," Energy, Elsevier, vol. 36(11), pages 6651-6660.
    12. Gawande, Vipin B. & Dhoble, A.S. & Zodpe, D.B. & Chamoli, Sunil, 2016. "A review of CFD methodology used in literature for predicting thermo-hydraulic performance of a roughened solar air heater," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 550-605.
    13. Gill, R.S. & Hans, V.S. & Saini, J.S. & Singh, Sukhmeet, 2017. "Investigation on performance enhancement due to staggered piece in a broken arc rib roughened solar air heater duct," Renewable Energy, Elsevier, vol. 104(C), pages 148-162.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sivakandhan, C. & Arjunan, T.V. & Matheswaran, M.M., 2020. "Thermohydraulic performance enhancement of a new hybrid duct solar air heater with inclined rib roughness," Renewable Energy, Elsevier, vol. 147(P1), pages 2345-2357.
    2. Tuncer, Azim Doğuş & Khanlari, Ataollah, 2023. "Improving the performance of a triple-flow solar air collector using recyclable aluminum cans as extended heat transfer surfaces: An energetic, exergetic, economic and environmental survey," Energy, Elsevier, vol. 282(C).
    3. Khanlari, Ataollah & Tuncer, Azim Doğuş, 2023. "Analysis of an infrared-assisted triple-flow prototype solar drying system with nano-embedded absorber coating: An experimental and numerical study," Renewable Energy, Elsevier, vol. 216(C).
    4. Barilelo Nghana & Fitsum Tariku & Girma Bitsuamlak, 2023. "Numerical Study of the Impact of Transverse Ribs on the Energy Potential of Air-Based BIPV/T Envelope Systems," Energies, MDPI, vol. 16(14), pages 1-20, July.
    5. António Araújo, 2020. "Thermo-Hydraulic Performance of Solar Air Collectors with Artificially Roughened Absorbers: A Comparative Review of Semi-Empirical Models," Energies, MDPI, vol. 13(14), pages 1-33, July.
    6. Hwi-Ung Choi & Kwang-Am Moon & Seong-Bhin Kim & Kwang-Hwan Choi, 2023. "CFD Analysis of the Heat Transfer and Fluid Flow Characteristics Using the Rectangular Rib Attached to the Fin Surface in a Solar Air Heater," Sustainability, MDPI, vol. 15(6), pages 1-18, March.
    7. Byeong-Hwa An & Kwang-Hwan Choi & Hwi-Ung Choi, 2023. "Heat Transfer Augmentation and Friction Factor Due to the Arrangement of Rectangular Turbulators in a Finned Air Channel of a Solar Air Heater," Energies, MDPI, vol. 16(19), pages 1-18, September.
    8. Nidhul, Kottayat & Kumar, Sachin & Yadav, Ajay Kumar & Anish, S., 2020. "Enhanced thermo-hydraulic performance in a V-ribbed triangular duct solar air heater: CFD and exergy analysis," Energy, Elsevier, vol. 200(C).
    9. Kumar, Rajneesh & Goel, Varun, 2021. "Unconventional solar air heater with triangular flow-passage: A CFD based comparative performance assessment of different cross-sectional rib-roughnesses," Renewable Energy, Elsevier, vol. 172(C), pages 1267-1278.
    10. Goel, Varun & Kumar, Rajneesh & Bhattacharyya, Suvanjan & Tyagi, V.V. & Abusorrah, Abdullah M., 2021. "A comprehensive parametric investigation of hemispherical cavities on thermal performance and flow-dynamics in the triangular-duct solar-assisted air-heater," Renewable Energy, Elsevier, vol. 173(C), pages 896-912.
    11. Varun Pratap Singh & Siddharth Jain & Ashish Karn & Ashwani Kumar & Gaurav Dwivedi & Chandan Swaroop Meena & Raffaello Cozzolino, 2022. "Mathematical Modeling of Efficiency Evaluation of Double-Pass Parallel Flow Solar Air Heater," Sustainability, MDPI, vol. 14(17), pages 1-22, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nidhul, Kottayat & Kumar, Sachin & Yadav, Ajay Kumar & Anish, S., 2020. "Enhanced thermo-hydraulic performance in a V-ribbed triangular duct solar air heater: CFD and exergy analysis," Energy, Elsevier, vol. 200(C).
    2. Nidhul, Kottayat & Yadav, Ajay Kumar & Anish, S. & Kumar, Sachin, 2021. "Critical review of ribbed solar air heater and performance evaluation of various V-rib configuration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    3. Kumar, Rajneesh & Goel, Varun, 2021. "Unconventional solar air heater with triangular flow-passage: A CFD based comparative performance assessment of different cross-sectional rib-roughnesses," Renewable Energy, Elsevier, vol. 172(C), pages 1267-1278.
    4. Kumar, Rajneesh & Goel, Varun & Kumar, Anoop, 2018. "Investigation of heat transfer augmentation and friction factor in triangular duct solar air heater due to forward facing chamfered rectangular ribs: A CFD based analysis," Renewable Energy, Elsevier, vol. 115(C), pages 824-835.
    5. Singh Yadav, Anil & Kumar Thapak, Manish, 2014. "Artificially roughened solar air heater: Experimental investigations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 370-411.
    6. Debnath, Suman & Das, Biplab & Randive, P.R. & Pandey, K.M., 2018. "Performance analysis of solar air collector in the climatic condition of North Eastern India," Energy, Elsevier, vol. 165(PB), pages 281-298.
    7. Alam, Tabish & Kim, Man-Hoe, 2018. "A comprehensive review on single phase heat transfer enhancement techniques in heat exchanger applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 813-839.
    8. Karmveer & Naveen Kumar Gupta & Tabish Alam & Raffaello Cozzolino & Gino Bella, 2022. "A Descriptive Review to Access the Most Suitable Rib’s Configuration of Roughness for the Maximum Performance of Solar Air Heater," Energies, MDPI, vol. 15(8), pages 1-46, April.
    9. Yadav, Anil Singh & Bhagoria, J.L., 2013. "A CFD (computational fluid dynamics) based heat transfer and fluid flow analysis of a solar air heater provided with circular transverse wire rib roughness on the absorber plate," Energy, Elsevier, vol. 55(C), pages 1127-1142.
    10. Singh, Amritpal & Singh, Sukhmeet, 2017. "CFD investigation on roughness pitch variation in non-uniform cross-section transverse rib roughness on Nusselt number and friction factor characteristics of solar air heater duct," Energy, Elsevier, vol. 128(C), pages 109-127.
    11. Al-Zahrani, Salman, 2023. "Thermal performance augmentation of solar air heater with curved path," Energy, Elsevier, vol. 284(C).
    12. Singh Bisht, Vijay & Kumar Patil, Anil & Gupta, Anirudh, 2018. "Review and performance evaluation of roughened solar air heaters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 954-977.
    13. Nidhul, Kottayat & Yadav, Ajay Kumar & Anish, S. & Arunachala, U.C., 2022. "Thermo-hydraulic and exergetic performance of a cost-effective solar air heater: CFD and experimental study," Renewable Energy, Elsevier, vol. 184(C), pages 627-641.
    14. Evangelisti, Luca & De Lieto Vollaro, Roberto & Asdrubali, Francesco, 2019. "Latest advances on solar thermal collectors: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    15. Vengadesan, Elumalai & Senthil, Ramalingam, 2020. "A review on recent developments in thermal performance enhancement methods of flat plate solar air collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    16. Prasad, Jay Shankar & Datta, Aparesh & Mondal, Sirshendu, 2024. "Flow and thermal behavior of solar air heater with grooved roughness," Renewable Energy, Elsevier, vol. 220(C).
    17. Alam, Tabish & Kim, Man-Hoe, 2017. "Performance improvement of double-pass solar air heater – A state of art of review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 779-793.
    18. Anil Singh Yadav & Tabish Alam & Gaurav Gupta & Rajiv Saxena & Naveen Kumar Gupta & K. Viswanath Allamraju & Rahul Kumar & Neeraj Sharma & Abhishek Sharma & Utkarsh Pandey & Yogesh Agrawal, 2022. "A Numerical Investigation of an Artificially Roughened Solar Air Heater," Energies, MDPI, vol. 15(21), pages 1-27, October.
    19. Oztop, Hakan F. & Bayrak, Fatih & Hepbasli, Arif, 2013. "Energetic and exergetic aspects of solar air heating (solar collector) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 59-83.
    20. Varun Kumar B. & G. Manikandan & P. Rajesh Kanna & Dawid Taler & Jan Taler & Marzena Nowak-Ocłoń & Karol Mzyk & Hoong Thiam Toh, 2018. "A Performance Evaluation of a Solar Air Heater Using Different Shaped Ribs Mounted on the Absorber Plate—A Review," Energies, MDPI, vol. 11(11), pages 1-20, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:131:y:2019:i:c:p:788-799. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.