IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v115y2018icp199-207.html
   My bibliography  Save this article

Electrochemical hydrogen storage properties of NiAl2O4/NiO nanostructures using TiO2, SiO2 and graphene by auto-combustion method using green tea extract

Author

Listed:
  • Gholami, Tahereh
  • Salavati-Niasari, Masoud
  • Salehabadi, Ali
  • Amiri, Mahnaz
  • Shabani-Nooshabadi, Mehdi
  • Rezaie, Mehran

Abstract

NiAl2O4/NiO nanostructures were synthesized via an auto-combustion method using green tea extract. TiO2, SiO2, and graphene were used in order to enhance the electrochemical hydrogen storage performance of NiAl2O4. The structural analysis of host texture confirmed the formation of NiO alongside with NiAl2O4. Furthermore, the formation of nanocomposites and distribution of the additives on the surface of NiAl2O4/NiO nanostructures were affirmed by XRD and EDS spectra. The morphological analyses were displayed the nanoscale formation of the particles. Interestingly, the electrochemical hydrogen storage of the nanocomposites indicated that upon addition of TiO2, SiO2 and graphene, the discharge capacity enhanced as compare to the host material. The maximum discharge capacities of NiAl2O4/NiO and its respective nanocomposites containing SiO2, graphene, and TiO2 were observed at 850, 2000, 2750 and 3000 mA h/g, respectively.

Suggested Citation

  • Gholami, Tahereh & Salavati-Niasari, Masoud & Salehabadi, Ali & Amiri, Mahnaz & Shabani-Nooshabadi, Mehdi & Rezaie, Mehran, 2018. "Electrochemical hydrogen storage properties of NiAl2O4/NiO nanostructures using TiO2, SiO2 and graphene by auto-combustion method using green tea extract," Renewable Energy, Elsevier, vol. 115(C), pages 199-207.
  • Handle: RePEc:eee:renene:v:115:y:2018:i:c:p:199-207
    DOI: 10.1016/j.renene.2017.08.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117307905
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.08.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Niaz, Saba & Manzoor, Taniya & Pandith, Altaf Hussain, 2015. "Hydrogen storage: Materials, methods and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 457-469.
    2. Ensafi, Ali A. & Jafari-Asl, Mehdi & Nabiyan, Afshin & Rezaei, Behzad & Dinari, Mohammad, 2016. "Hydrogen storage in hybrid of layered double hydroxides/reduced graphene oxide using spillover mechanism," Energy, Elsevier, vol. 99(C), pages 103-114.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kamali, Saeedeh & Zhiani, Mohammad & Tavakol, Hossein, 2020. "Synergism effect of first row transition metals in experimental and theoretical activity of NiM/rGO alloys at hydrogen evolution reaction in alkaline electrolyzer," Renewable Energy, Elsevier, vol. 154(C), pages 1122-1131.
    2. Mohammadi-Ganjgah, Ali & Shaterian, Maryam & Bahrami, Hamed & Rasuli, Reza & Yavari, Shabnam & Ghasemi, Razieh & Parvizi, Ziba, 2024. "Electrospun synthesis of polyaniline and titanium dioxide nanofibers as potential electrode materials in electrochemical hydrogen storage," Renewable Energy, Elsevier, vol. 226(C).
    3. Li, Jigang & Guo, Yanru & Jiang, Xiaojing & Li, Shuan & Li, Xingguo, 2020. "Hydrogen storage performances, kinetics and microstructure of Ti1.02Cr1.0Fe0.7-xMn0.3Alx alloy by Al substituting for Fe," Renewable Energy, Elsevier, vol. 153(C), pages 1140-1154.
    4. Kim, Ayeon & Yoo, Youngdon & Kim, Suhyun & Lim, Hankwon, 2021. "Comprehensive analysis of overall H2 supply for different H2 carriers from overseas production to inland distribution with respect to economic, environmental, and technological aspects," Renewable Energy, Elsevier, vol. 177(C), pages 422-432.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alina E. Kozhukhova & Stephanus P. du Preez & Dmitri G. Bessarabov, 2021. "Catalytic Hydrogen Combustion for Domestic and Safety Applications: A Critical Review of Catalyst Materials and Technologies," Energies, MDPI, vol. 14(16), pages 1-32, August.
    2. Ye, Yang & Lu, Jianfeng & Ding, Jing & Wang, Weilong & Yan, Jinyue, 2020. "Numerical simulation on the storage performance of a phase change materials based metal hydride hydrogen storage tank," Applied Energy, Elsevier, vol. 278(C).
    3. Ye, Yang & Yue, Yi & Lu, Jianfeng & Ding, Jing & Wang, Weilong & Yan, Jinyue, 2021. "Enhanced hydrogen storage of a LaNi5 based reactor by using phase change materials," Renewable Energy, Elsevier, vol. 180(C), pages 734-743.
    4. Ye, Yang & Ding, Jing & Wang, Weilong & Yan, Jinyue, 2021. "The storage performance of metal hydride hydrogen storage tanks with reaction heat recovery by phase change materials," Applied Energy, Elsevier, vol. 299(C).
    5. Muhammad Aziz & Agung Tri Wijayanta & Asep Bayu Dani Nandiyanto, 2020. "Ammonia as Effective Hydrogen Storage: A Review on Production, Storage and Utilization," Energies, MDPI, vol. 13(12), pages 1-25, June.
    6. Reuß, Markus & Grube, Thomas & Robinius, Martin & Stolten, Detlef, 2019. "A hydrogen supply chain with spatial resolution: Comparative analysis of infrastructure technologies in Germany," Applied Energy, Elsevier, vol. 247(C), pages 438-453.
    7. Wang, Cong & Feng, Yu & Liu, Zekuan & Wang, Yilin & Fang, Jiwei & Qin, Jiang & Shao, Jiahui & Huang, Hongyan, 2022. "Assessment of thermodynamic performance and CO2 emission reduction for a supersonic precooled turbine engine cycle fueled with a new green fuel of ammonia," Energy, Elsevier, vol. 261(PA).
    8. Perčić, Maja & Vladimir, Nikola & Fan, Ailong, 2021. "Techno-economic assessment of alternative marine fuels for inland shipping in Croatia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    9. Sanjay Kumar Kar & Akhoury Sudhir Kumar Sinha & Sidhartha Harichandan & Rohit Bansal & Marriyappan Sivagnanam Balathanigaimani, 2023. "Hydrogen economy in India: A status review," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(1), January.
    10. Monama, Gobeng R. & Mdluli, Siyabonga B. & Mashao, Gloria & Makhafola, Mogwasha D. & Ramohlola, Kabelo E. & Molapo, Kerileng M. & Hato, Mpitloane J. & Makgopa, Katlego & Iwuoha, Emmanuel I. & Modibane, 2018. "Palladium deposition on copper(II) phthalocyanine/metal organic framework composite and electrocatalytic activity of the modified electrode towards the hydrogen evolution reaction," Renewable Energy, Elsevier, vol. 119(C), pages 62-72.
    11. Wang, Feng & Li, Rongfeng & Ding, Cuiping & Tang, Wukui & Wang, Yibo & Xu, Shimeng & Yu, Ronghai & Wang, Zhongmin, 2017. "Enhanced hydrogen storage properties of ZrCo alloy decorated with flower-like Pd particles," Energy, Elsevier, vol. 139(C), pages 8-17.
    12. Zheng, Jianpeng & Chen, Liubiao & Liu, Xuming & Zhu, Honglai & Zhou, Yuan & Wang, Junjie, 2020. "Thermodynamic optimization of composite insulation system with cold shield for liquid hydrogen zero-boil-off storage," Renewable Energy, Elsevier, vol. 147(P1), pages 824-832.
    13. Sreedhar, I. & Kamani, Krutarth M. & Kamani, Bansi M. & Reddy, Benjaram M. & Venugopal, A., 2018. "A Bird's Eye view on process and engineering aspects of hydrogen storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 838-860.
    14. Bhandari, Ramchandra & Shah, Ronak Rakesh, 2021. "Hydrogen as energy carrier: Techno-economic assessment of decentralized hydrogen production in Germany," Renewable Energy, Elsevier, vol. 177(C), pages 915-931.
    15. Gorlova, A.M. & Kayl, N.L. & Komova, O.V. & Netskina, O.V. & Ozerova, A.M. & Odegova, G.V. & Bulavchenko, O.A. & Ishchenko, A.V. & Simagina, V.I., 2018. "Fast hydrogen generation from solid NH3BH3 under moderate heating and supplying a limited quantity of CoCl2 or NiCl2 solution," Renewable Energy, Elsevier, vol. 121(C), pages 722-729.
    16. Ensafi, Ali A. & Nabiyan, Afshin & Jafari-Asl, Mehdi & Dinari, Mohammad & Farrokhpour, Hossein & Rezaei, B., 2016. "Galvanic exchange at layered doubled hydroxide/N-doped graphene as an in-situ method to fabricate powerful electrocatalysts for hydrogen evolution reaction," Energy, Elsevier, vol. 116(P1), pages 1087-1096.
    17. Usman, Muhammad R., 2022. "Hydrogen storage methods: Review and current status," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    18. Minsoo Choi & Wongwan Jung & Sanghyuk Lee & Taehwan Joung & Daejun Chang, 2021. "Thermal Efficiency and Economics of a Boil-Off Hydrogen Re-Liquefaction System Considering the Energy Efficiency Design Index for Liquid Hydrogen Carriers," Energies, MDPI, vol. 14(15), pages 1-23, July.
    19. Anand, Abhijeet & Kumar, Vivek & Kaushal, Priyanka, 2022. "Biochar and its twin benefits: Crop residue management and climate change mitigation in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    20. Ádám Révész & Marcell Gajdics, 2021. "Improved H-Storage Performance of Novel Mg-Based Nanocomposites Prepared by High-Energy Ball Milling: A Review," Energies, MDPI, vol. 14(19), pages 1-31, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:115:y:2018:i:c:p:199-207. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.