IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v115y2018icp1249-1259.html
   My bibliography  Save this article

Analysis on the cooling and soaking-up performance of wet porous wall for building

Author

Listed:
  • Chen, Wei
  • Zhang, Shuqiong
  • Zhang, Yunsong

Abstract

The porous ceramic pipes with high water soaking-up ability have been combined for passive evaporative cooling wall. The cooling can be supplied due to the occurrence of heat and moisture transfer between the drying air and the outside surfaces of wet porous pipes when the airflow passes through the combining wall, and the lost water is provided by capillary force in the wet porous media, thus, the passive evaporative cooling continues. In the combining wall, the effects of the arrangement of wet porous ceramic pipes in staggered array or in parallel array, the number of pipe rows and the space between the adjacent pipes, as well as the weather conditions on the cooling were investigated. The Darcy law for unsaturated porous media, the momentum balance of a liquid and J(s) function were employed to analyze the water soaking-up performance in the wet porous pipe. The simulations agree with the test results. Besides, more cooling can be supplied from the wet porous ceramic pipes filled with wet sand than that without wet sand in the tests when the airflow passes through the wet porous ceramic. All results provide some guidance for the promotion and application of the passive evaporative porous wall.

Suggested Citation

  • Chen, Wei & Zhang, Shuqiong & Zhang, Yunsong, 2018. "Analysis on the cooling and soaking-up performance of wet porous wall for building," Renewable Energy, Elsevier, vol. 115(C), pages 1249-1259.
  • Handle: RePEc:eee:renene:v:115:y:2018:i:c:p:1249-1259
    DOI: 10.1016/j.renene.2017.08.024
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117307796
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.08.024?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Duan, Zhiyin & Zhan, Changhong & Zhang, Xingxing & Mustafa, Mahmud & Zhao, Xudong & Alimohammadisagvand, Behrang & Hasan, Ala, 2012. "Indirect evaporative cooling: Past, present and future potentials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6823-6850.
    2. Ong, K.S., 2003. "A mathematical model of a solar chimney," Renewable Energy, Elsevier, vol. 28(7), pages 1047-1060.
    3. Maerefat, M. & Haghighi, A.P., 2010. "Natural cooling of stand-alone houses using solar chimney and evaporative cooling cavity," Renewable Energy, Elsevier, vol. 35(9), pages 2040-2052.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Wei & Ling, Xiang, 2023. "Performance analysis of a sorption heat storage-photocatalytic combined passive solar envelope for space heating and air purification," Energy, Elsevier, vol. 280(C).
    2. Chen, Wei & Chen, Wei, 2020. "Analysis of heat transfer and flow in the solar chimney with the sieve-plate thermal storage beds packed with phase change capsules," Renewable Energy, Elsevier, vol. 157(C), pages 491-501.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vargas-López, R. & Xamán, J. & Hernández-Pérez, I. & Arce, J. & Zavala-Guillén, I. & Jiménez, M.J. & Heras, M.R., 2019. "Mathematical models of solar chimneys with a phase change material for ventilation of buildings: A review using global energy balance," Energy, Elsevier, vol. 170(C), pages 683-708.
    2. Monghasemi, Nima & Vadiee, Amir, 2018. "A review of solar chimney integrated systems for space heating and cooling application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2714-2730.
    3. Tejero-González, Ana & Andrés-Chicote, Manuel & García-Ibáñez, Paola & Velasco-Gómez, Eloy & Rey-Martínez, Francisco Javier, 2016. "Assessing the applicability of passive cooling and heating techniques through climate factors: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 727-742.
    4. Zhai, X.Q. & Song, Z.P. & Wang, R.Z., 2011. "A review for the applications of solar chimneys in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3757-3767.
    5. Oliveira, Cíntia Carla Melgaço de & Brittes, José Luiz Pereira & Silveira Junior, Vivaldo, 2019. "Dynamic operating conditions strategy for water hybrid cooling under variable heating demand," Applied Energy, Elsevier, vol. 237(C), pages 635-645.
    6. Hwang, Won-Baek & Choi, Sun & Lee, Dae-Young, 2017. "In-depth analysis of the performance of hybrid desiccant cooling system incorporated with an electric heat pump," Energy, Elsevier, vol. 118(C), pages 324-332.
    7. Park, Joon-Young & Kim, Beom-Jun & Yoon, Soo-Yeol & Byon, Yoo-Suk & Jeong, Jae-Weon, 2019. "Experimental analysis of dehumidification performance of an evaporative cooling-assisted internally cooled liquid desiccant dehumidifier," Applied Energy, Elsevier, vol. 235(C), pages 177-185.
    8. Ham, Sang-Woo & Jeong, Jae-Weon, 2016. "DPHX (dew point evaporative heat exchanger): System design and performance analysis," Energy, Elsevier, vol. 101(C), pages 132-145.
    9. Mahmood, Muhammad H. & Sultan, Muhammad & Miyazaki, Takahiko & Koyama, Shigeru & Maisotsenko, Valeriy S., 2016. "Overview of the Maisotsenko cycle – A way towards dew point evaporative cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 537-555.
    10. Demis Pandelidis & Sergey Anisimov & Paweł Drąg, 2017. "Performance Comparison between Selected Evaporative Air Coolers," Energies, MDPI, vol. 10(4), pages 1-20, April.
    11. Oh, Seung Jin & Shahzad, Muhammad Wakil & Burhan, Muhammad & Chun, Wongee & Kian Jon, Chua & KumJa, M. & Ng, Kim Choon, 2019. "Approaches to energy efficiency in air conditioning: A comparative study on purge configurations for indirect evaporative cooling," Energy, Elsevier, vol. 168(C), pages 505-515.
    12. Pandelidis, Demis & Cichoń, Aleksandra & Pacak, Anna & Anisimov, Sergey & Drąg, Paweł, 2018. "Counter-flow indirect evaporative cooler for heat recovery in the temperate climate," Energy, Elsevier, vol. 165(PA), pages 877-894.
    13. Xu, Peng & Ma, Xiaoli & Zhao, Xudong & Fancey, Kevin, 2017. "Experimental investigation of a super performance dew point air cooler," Applied Energy, Elsevier, vol. 203(C), pages 761-777.
    14. Shi, Long, 2018. "Theoretical models for wall solar chimney under cooling and heating modes considering room configuration," Energy, Elsevier, vol. 165(PB), pages 925-938.
    15. DeBlois, Justin C. & Bilec, Melissa M. & Schaefer, Laura A., 2013. "Design and zonal building energy modeling of a roof integrated solar chimney," Renewable Energy, Elsevier, vol. 52(C), pages 241-250.
    16. Anisimov, Sergey & Pandelidis, Demis & Jedlikowski, Andrzej, 2015. "Performance study of the indirect evaporative air cooler and heat recovery exchanger in air conditioning system during the summer and winter operation," Energy, Elsevier, vol. 89(C), pages 205-225.
    17. Xamán, J. & Vargas-López, R. & Gijón-Rivera, M. & Zavala-Guillén, I. & Jiménez, M.J. & Arce, J., 2019. "Transient thermal analysis of a solar chimney for buildings with three different types of absorbing materials: Copper plate/PCM/concrete wall," Renewable Energy, Elsevier, vol. 136(C), pages 139-158.
    18. Maerefat, M. & Haghighi, A.P., 2010. "Passive cooling of buildings by using integrated earth to air heat exchanger and solar chimney," Renewable Energy, Elsevier, vol. 35(10), pages 2316-2324.
    19. Ma, Xiaoli & Zhao, Xudong & Zhang, Yufeng & Liu, Kaixin & Yang, Hui & Li, Jing & Akhlaghi, Yousef Golizadeh & Liu, Haowen & Han, Zhonghe & Liu, Zhijian, 2022. "Combined Rankine Cycle and dew point cooler for energy efficient power generation of the power plants - A review and perspective study," Energy, Elsevier, vol. 238(PA).
    20. Liu, Yuting & Li, Jun Ming & Yang, Xu & Zhao, Xudong, 2019. "Two-dimensional numerical study of a heat and mass exchanger for a dew-point evaporative cooler," Energy, Elsevier, vol. 168(C), pages 975-988.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:115:y:2018:i:c:p:1249-1259. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.