IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v237y2019icp635-645.html
   My bibliography  Save this article

Dynamic operating conditions strategy for water hybrid cooling under variable heating demand

Author

Listed:
  • Oliveira, Cíntia Carla Melgaço de
  • Brittes, José Luiz Pereira
  • Silveira Junior, Vivaldo

Abstract

This work presents a study of a dynamic strategy for obtaining the lowest consumption of electrical energy in pumps and fans with varying operating conditions for the hybrid cooling of water, which is used as thermal fluid in a cooling unit for vegetable oil. The effects of the operating variables (air flow rate, water flow rate and heating power) on the cooling of water and oil and the electrical energy consumption were evaluated. The selection of the best water-cooling strategy was conditioned to the maximum inlet temperature of 90 °C, resulting in improvements in the energy efficiency that ranged between 35% and 94%, when compared to the use of fixed and nominal operating conditions. Thus, the evaluation of the operating variables effects dependency is strategic for the adequation of the operational conditions and obtainment of better energy efficiency for the process with variable demands.

Suggested Citation

  • Oliveira, Cíntia Carla Melgaço de & Brittes, José Luiz Pereira & Silveira Junior, Vivaldo, 2019. "Dynamic operating conditions strategy for water hybrid cooling under variable heating demand," Applied Energy, Elsevier, vol. 237(C), pages 635-645.
  • Handle: RePEc:eee:appene:v:237:y:2019:i:c:p:635-645
    DOI: 10.1016/j.apenergy.2019.01.053
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919300558
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.01.053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paul J. J. Welfens, 2019. "Lack of international risk management in BREXIT?," International Economics and Economic Policy, Springer, vol. 16(1), pages 103-160, March.
    2. McKeil A.C., 2018. "Tim Dunne and Christian Reus-Smit: The Globalization of International Society," New Global Studies, De Gruyter, vol. 12(1), pages 119-121, April.
    3. James G. S. Yang & Victor N. A. Metallo, 2018. "The Emerging International Taxation Problems," IJFS, MDPI, vol. 6(1), pages 1-10, January.
    4. Kojok, Farah & Fardoun, Farouk & Younes, Rafic & Outbib, Rachid, 2016. "Hybrid cooling systems: A review and an optimized selection scheme," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 57-80.
    5. Paul J.J. Welfens, 2018. "International Risk Management in BREXIT and Policy Options," EIIW Discussion paper disbei242, Universitätsbibliothek Wuppertal, University Library.
    6. Patterson, Murray G, 1996. "What is energy efficiency? : Concepts, indicators and methodological issues," Energy Policy, Elsevier, vol. 24(5), pages 377-390, May.
    7. Duan, Zhiyin & Zhan, Changhong & Zhang, Xingxing & Mustafa, Mahmud & Zhao, Xudong & Alimohammadisagvand, Behrang & Hasan, Ala, 2012. "Indirect evaporative cooling: Past, present and future potentials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6823-6850.
    8. ., 2018. "An international survey analysis," Chapters, in: The Economics of Open Access, chapter 3, pages 57-96, Edward Elgar Publishing.
    9. Cuce, Pinar Mert & Riffat, Saffa, 2016. "A state of the art review of evaporative cooling systems for building applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1240-1249.
    10. ., 2018. "The Hague: the international government city," Chapters, in: Varieties of Capital Cities, chapter 6, pages 100-127, Edward Elgar Publishing.
    11. ., 2018. "Reforming the international payments system," Chapters, in: All Fall Down, chapter 31, pages 200-216, Edward Elgar Publishing.
    12. Abohorlu Doğramacı, Pervin & Riffat, Saffa & Gan, Guohui & Aydın, Devrim, 2019. "Experimental study of the potential of eucalyptus fibres for evaporative cooling," Renewable Energy, Elsevier, vol. 131(C), pages 250-260.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Catrini, P. & Panno, D. & Cardona, F. & Piacentino, A., 2020. "Characterization of cooling loads in the wine industry and novel seasonal indicator for reliable assessment of energy saving through retrofit of chillers," Applied Energy, Elsevier, vol. 266(C).
    2. Gao, Tong & Fang, Delin & Chen, Bin, 2020. "Multi-regional input-output and linkage analysis for water-PM2.5 nexus," Applied Energy, Elsevier, vol. 268(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ullah, Kafait & Hamid, Salman & Mirza, Faisal Mehmood & Shakoor, Usman, 2018. "Prioritizing the gaseous alternatives for the road transport sector of Pakistan: A multi criteria decision making analysis," Energy, Elsevier, vol. 165(PB), pages 1072-1084.
    2. Yang, Yifan & Cui, Gary & Lan, Christopher Q., 2019. "Developments in evaporative cooling and enhanced evaporative cooling - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    3. Zhu, Delong & Li, Zhe & Mishra, Arunodaya Raj, 2023. "Evaluation of the critical success factors of dynamic enterprise risk management in manufacturing SMEs using an integrated fuzzy decision-making model," Technological Forecasting and Social Change, Elsevier, vol. 186(PA).
    4. Shazia Noor & Hadeed Ashraf & Muhammad Sultan & Zahid Mahmood Khan, 2020. "Evaporative Cooling Options for Building Air-Conditioning: A Comprehensive Study for Climatic Conditions of Multan (Pakistan)," Energies, MDPI, vol. 13(12), pages 1-23, June.
    5. Albahri, O.S. & Alamoodi, A.H. & Deveci, Muhammet & Albahri, A.S. & Mahmoud, Moamin A. & Sharaf, Iman Mohamad & Coffman, D'Maris, 2023. "Multi-perspective evaluation of integrated active cooling systems using fuzzy decision making model," Energy Policy, Elsevier, vol. 182(C).
    6. Tejero-González, A. & Franco-Salas, A., 2021. "Optimal operation of evaporative cooling pads: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    7. Jan Taler & Bartosz Jagieła & Magdalena Jaremkiewicz, 2022. "Overview of the M-Cycle Technology for Air Conditioning and Cooling Applications," Energies, MDPI, vol. 15(5), pages 1-19, March.
    8. Khawar Shahzad & Muhammad Sultan & Muhammad Bilal & Hadeed Ashraf & Muhammad Farooq & Takahiko Miyazaki & Uzair Sajjad & Imran Ali & Muhammad I. Hussain, 2021. "Experiments on Energy-Efficient Evaporative Cooling Systems for Poultry Farm Application in Multan (Pakistan)," Sustainability, MDPI, vol. 13(5), pages 1-21, March.
    9. Yan, Weichao & Cui, Xin & Meng, Xiangzhao & Yang, Chuanjun & Liu, Yilin & An, Hui & Jin, Liwen, 2023. "Effects of membrane characteristics on the evaporative cooling performance for hollow fiber membrane modules," Energy, Elsevier, vol. 270(C).
    10. Yang, Hongxing & Shi, Wenchao & Chen, Yi & Min, Yunran, 2021. "Research development of indirect evaporative cooling technology: An updated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    11. Lanbo Lai & Xiaolin Wang & Gholamreza Kefayati & Eric Hu, 2021. "Evaporative Cooling Integrated with Solid Desiccant Systems: A Review," Energies, MDPI, vol. 14(18), pages 1-23, September.
    12. Muhammad Aleem & Ghulam Hussain & Muhammad Sultan & Takahiko Miyazaki & Muhammad H. Mahmood & Muhammad I. Sabir & Abdul Nasir & Faizan Shabir & Zahid M. Khan, 2020. "Experimental Investigation of Desiccant Dehumidification Cooling System for Climatic Conditions of Multan (Pakistan)," Energies, MDPI, vol. 13(21), pages 1-23, October.
    13. Xin Cui & Le Sun & Sicong Zhang & Liwen Jin, 2019. "On the Study of a Hybrid Indirect Evaporative Pre-Cooling System for Various Climates," Energies, MDPI, vol. 12(23), pages 1-16, November.
    14. Goudarzi, Hossein & Mostafaeipour, Ali, 2017. "Energy saving evaluation of passive systems for residential buildings in hot and dry regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 432-446.
    15. Krzysztof Rajski & Jan Danielewicz & Ewa Brychcy, 2020. "Performance Evaluation of a Gravity-Assisted Heat Pipe-Based Indirect Evaporative Cooler," Energies, MDPI, vol. 13(1), pages 1-20, January.
    16. Zhou, Yuanyuan & Zhang, Tao & Wang, Fang & Yu, Yanshun, 2018. "Performance analysis of a novel thermoelectric assisted indirect evaporative cooling system," Energy, Elsevier, vol. 162(C), pages 299-308.
    17. Cristino, T.M. & Lotufo, F.A. & Delinchant, B. & Wurtz, F. & Faria Neto, A., 2021. "A comprehensive review of obstacles and drivers to building energy-saving technologies and their association with research themes, types of buildings, and geographic regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    18. Lundgren, Tommy & Marklund, Per-Olov & Zhang, Shanshan, 2016. "Industrial energy demand and energy efficiency – Evidence from Sweden," Resource and Energy Economics, Elsevier, vol. 43(C), pages 130-152.
    19. Shoaib Azizi & Gireesh Nair & Thomas Olofsson, 2020. "Adoption of Energy Efficiency Measures in Renovation of Single-Family Houses: A Comparative Approach," Energies, MDPI, vol. 13(22), pages 1-16, November.
    20. Axenbeck, Janna & Niebel, Thomas, 2021. "Climate Protection Potentials of Digitalized Production Processes: Microeconometric Evidence?," VfS Annual Conference 2021 (Virtual Conference): Climate Economics 242369, Verein für Socialpolitik / German Economic Association.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:237:y:2019:i:c:p:635-645. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.