IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v114y2017ipbp480-488.html
   My bibliography  Save this article

Application of deep eutectic solvents as catalysts for the esterification of oleic acid with glycerol

Author

Listed:
  • Williamson, Scott T.
  • Shahbaz, Kaveh
  • Mjalli, Farouq S.
  • AlNashef, Inas M.
  • Farid, Mohammed M.

Abstract

Free fatty acids (FFA) in low grade oil could be reduced by using an esterification reaction with glycerol, which itself is a waste product of biodiesel synthesis to give mono- and di-glycerides. This study investigated, for the first time, the reaction between oleic acid as a FFA with glycerol, using a phosphonium-based deep eutectic solvent (DES) as a catalyst. The effects of temperature (120 °C, 150 °C and 180 °C) and the DES catalyst concentration (1, 3 and 5 wt%) on the esterification efficiency of fatty acid conversion were observed. The glycerol to fatty acid molar ratio (6:1) and agitation speed (600 rpm) were kept constant. The results revealed that the lowest activation energy of 54.64 kJ/mol was attained using 5 wt% of DES catalyst. Accordingly, optimum reaction conditions were found at a temperature of 150 °C with a 5 wt% DES catalyst, which produced 95% FFA conversion after 30 min of reaction time. In addition, 85% of combined mono- and di-glycerides was observed at the optimum condition, which will be easier to transesterify using alcohol. The process was repeated without adding any fresh catalyst and results showed that catalyst activity sustained very well, suggesting that it can be reused a number of times.

Suggested Citation

  • Williamson, Scott T. & Shahbaz, Kaveh & Mjalli, Farouq S. & AlNashef, Inas M. & Farid, Mohammed M., 2017. "Application of deep eutectic solvents as catalysts for the esterification of oleic acid with glycerol," Renewable Energy, Elsevier, vol. 114(PB), pages 480-488.
  • Handle: RePEc:eee:renene:v:114:y:2017:i:pb:p:480-488
    DOI: 10.1016/j.renene.2017.07.046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117306614
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.07.046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dorado, M.P. & Cruz, F. & Palomar, J.M. & López, F.J., 2006. "An approach to the economics of two vegetable oil-based biofuels in Spain," Renewable Energy, Elsevier, vol. 31(8), pages 1231-1237.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Tianyi & Shahbaz, Kaveh & Farid, Mohammed M., 2020. "Glycerolysis of free fatty acid in vegetable oil deodorizer distillate catalyzed by phosphonium-based deep eutectic solvent," Renewable Energy, Elsevier, vol. 160(C), pages 363-373.
    2. Mamtani, Kapil & Shahbaz, Kaveh & Farid, Mohammed M., 2021. "Glycerolysis of free fatty acids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    3. Hao, Xiaohong & Suo, Hang & Zhang, Guanhua & Xu, Peixing & Gao, Xin & Du, Su, 2021. "Ultrasound-assisted enzymatic preparation of fatty acid ethyl ester in deep eutectic solvent," Renewable Energy, Elsevier, vol. 164(C), pages 937-947.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Al-Jammal, Noor & Al-Hamamre, Zayed & Alnaief, Mohammad, 2016. "Manufacturing of zeolite based catalyst from zeolite tuft for biodiesel production from waste sunflower oil," Renewable Energy, Elsevier, vol. 93(C), pages 449-459.
    2. Ishola, Mofoluwake M. & Brandberg, Tomas & Sanni, Sikiru A. & Taherzadeh, Mohammad J., 2013. "Biofuels in Nigeria: A critical and strategic evaluation," Renewable Energy, Elsevier, vol. 55(C), pages 554-560.
    3. Russi, Daniela, 2008. "An integrated assessment of a large-scale biodiesel production in Italy: Killing several birds with one stone?," Energy Policy, Elsevier, vol. 36(3), pages 1169-1180, March.
    4. Agarwal, Deepak & Kumar, Lokesh & Agarwal, Avinash Kumar, 2008. "Performance evaluation of a vegetable oil fuelled compression ignition engine," Renewable Energy, Elsevier, vol. 33(6), pages 1147-1156.
    5. Laureano Costarrosa & David Eduardo Leiva-Candia & Antonio José Cubero-Atienza & Juan José Ruiz & M. Pilar Dorado, 2018. "Optimization of the Transesterification of Waste Cooking Oil with Mg-Al Hydrotalcite Using Response Surface Methodology," Energies, MDPI, vol. 11(2), pages 1-9, January.
    6. A. Alcantara & F. J. Lopez-Gimenez & M. P. Dorado, 2020. "Universal Kinetic Model to Simulate Two-Step Biodiesel Production from Vegetable Oil," Energies, MDPI, vol. 13(11), pages 1-15, June.
    7. Suganya, T. & Varman, M. & Masjuki, H.H. & Renganathan, S., 2016. "Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: A biorefinery approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 909-941.
    8. Chakrabarti, Mohammed Harun & Ali, Mehmood & Usmani, Jafar Nazir & Khan, Nasim Ahmed & Hasan, Diya'uddeen Basheer & Islam, Md. Sakinul & Abdul Raman, Abdul Aziz & Yusoff, Rozita & Irfan, Muhammad Fais, 2012. "Status of biodiesel research and development in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4396-4405.
    9. Gupta, Mayank & Kumar, Naveen, 2012. "Scope and opportunities of using glycerol as an energy source," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4551-4556.
    10. Peri, Massimo & Baldi, Lucia, 2013. "The effect of biofuel policies on feedstock market: Empirical evidence for rapeseed oil prices in EU," Resource and Energy Economics, Elsevier, vol. 35(1), pages 18-37.
    11. Kumar, Niraj & Varun, & Chauhan, Sant Ram, 2013. "Performance and emission characteristics of biodiesel from different origins: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 633-658.
    12. Pradhan, Piasy & Chakraborty, Rajat, 2018. "Optimal efficient biodiesel synthesis from used oil employing low-cost ram bone supported Cr catalyst: Engine performance and exhaust assessment," Energy, Elsevier, vol. 164(C), pages 35-45.
    13. Goh, Chun Sheng & Lee, Keat Teong, 2010. "Palm-based biofuel refinery (PBR) to substitute petroleum refinery: An energy and emergy assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2986-2995, December.
    14. Mbarawa, Makame, 2008. "Performance, emission and economic assessment of clove stem oil–diesel blended fuels as alternative fuels for diesel engines," Renewable Energy, Elsevier, vol. 33(5), pages 871-882.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:114:y:2017:i:pb:p:480-488. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.