IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v14y2010i9p2986-2995.html
   My bibliography  Save this article

Palm-based biofuel refinery (PBR) to substitute petroleum refinery: An energy and emergy assessment

Author

Listed:
  • Goh, Chun Sheng
  • Lee, Keat Teong

Abstract

As the most active palm industry cluster in the world, Malaysia produces enormous amount of biomass from the industry. This work studies the possibility of creating a renewable and sustainable source of energy by fully utilizing an area of land to provide liquid biofuel for the country. Palm-based biofuel refinery (PBR) proposed in this study has the ultimate goal to displace petroleum fuels and fulfill domestic energy demand. It fully utilizes indigenous palm biomass to fulfill 35.5% of energy demand in the country by using land area of only 8% of current palm cultivation. The operation concept of PBR is similar to petroleum refinery in which a single source feedstock (crude petroleum) can be processed to multiple products. In PBR, products from an oil palm plantation will be converted to various biofuel end products. Renewable biofuel such as biodiesel and bioethanol can be produced from crude palm oil and lignocellulosic residues. Energy and emergy assessment were made in this work to evaluate the sustainability and efficiency of PBR. Biofuel produced from PBR has a high energy equivalent of 31.56Â MJ/kg as 1Â ha of land can produce 182,142Â MJ annually. Although there are still obstacles to be overcome, it is important for Malaysia to develop its own energy supply from indigenous resources as an initiative not only for security but also lower carbon emission.

Suggested Citation

  • Goh, Chun Sheng & Lee, Keat Teong, 2010. "Palm-based biofuel refinery (PBR) to substitute petroleum refinery: An energy and emergy assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2986-2995, December.
  • Handle: RePEc:eee:rensus:v:14:y:2010:i:9:p:2986-2995
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364-0321(10)00228-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dorado, M.P. & Cruz, F. & Palomar, J.M. & López, F.J., 2006. "An approach to the economics of two vegetable oil-based biofuels in Spain," Renewable Energy, Elsevier, vol. 31(8), pages 1231-1237.
    2. Luo, Lin & van der Voet, Ester & Huppes, Gjalt, 2009. "An energy analysis of ethanol from cellulosic feedstock-Corn stover," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2003-2011, October.
    3. Thamsiriroj, T. & Murphy, J.D., 2009. "Is it better to import palm oil from Thailand to produce biodiesel in Ireland than to produce biodiesel from indigenous Irish rape seed?," Applied Energy, Elsevier, vol. 86(5), pages 595-604, May.
    4. Felix, Erika & Tilley, David R., 2009. "Integrated energy, environmental and financial analysis of ethanol production from cellulosic switchgrass," Energy, Elsevier, vol. 34(4), pages 410-436.
    5. Yee, Kian Fei & Tan, Kok Tat & Abdullah, Ahmad Zuhairi & Lee, Keat Teong, 2009. "Life cycle assessment of palm biodiesel: Revealing facts and benefits for sustainability," Applied Energy, Elsevier, vol. 86(Supplemen), pages 189-196, November.
    6. O. Chavalparit & W.H. Rulkens & A.P.J. Mol & S. Khaodhair, 2006. "Options For Environmental Sustainability Of The Crude Palm Oil Industry In Thailand Through Enhancement Of Industrial Ecosystems," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 8(2), pages 271-287, May.
    7. Cardona Alzate, C.A. & Sánchez Toro, O.J., 2006. "Energy consumption analysis of integrated flowsheets for production of fuel ethanol from lignocellulosic biomass," Energy, Elsevier, vol. 31(13), pages 2447-2459.
    8. Dong, Xiaobin & Ulgiati, Sergio & Yan, Maochao & Zhang, Xinshi & Gao, Wangsheng, 2008. "Energy and eMergy evaluation of bioethanol production from wheat in Henan Province, China," Energy Policy, Elsevier, vol. 36(10), pages 3882-3892, October.
    9. Kelly-Yong, Tau Len & Lee, Keat Teong & Mohamed, Abdul Rahman & Bhatia, Subhash, 2007. "Potential of hydrogen from oil palm biomass as a source of renewable energy worldwide," Energy Policy, Elsevier, vol. 35(11), pages 5692-5701, November.
    10. Carraretto, C. & Macor, A. & Mirandola, A. & Stoppato, A. & Tonon, S., 2004. "Biodiesel as alternative fuel: Experimental analysis and energetic evaluations," Energy, Elsevier, vol. 29(12), pages 2195-2211.
    11. Gui, M.M. & Lee, K.T. & Bhatia, S., 2008. "Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock," Energy, Elsevier, vol. 33(11), pages 1646-1653.
    12. Supranto, & Sopian, K. & Daud, W.R.W. & Othman, M.Y. & Yatim, B., 1999. "Design of an experimental solar assisted dryer for palm oil fronds," Renewable Energy, Elsevier, vol. 16(1), pages 643-646.
    13. Pleanjai, Somporn & Gheewala, Shabbir H., 2009. "Full chain energy analysis of biodiesel production from palm oil in Thailand," Applied Energy, Elsevier, vol. 86(Supplemen), pages 209-214, November.
    14. Katayama, Yukuo & Tamaura, Yutaka, 2005. "Development of new green-fuel production technology by combination of fossil fuel and renewable energy," Energy, Elsevier, vol. 30(11), pages 2179-2185.
    15. Jekayinfa, S.O. & Bamgboye, A.I., 2008. "Energy use analysis of selected palm-kernel oil mills in south western Nigeria," Energy, Elsevier, vol. 33(1), pages 81-90.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amaral, Luís P. & Martins, Nélson & Gouveia, Joaquim B., 2016. "A review of emergy theory, its application and latest developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 882-888.
    2. Petinrin, J.O. & Shaaban, Mohamed, 2015. "Renewable energy for continuous energy sustainability in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 967-981.
    3. Marian R. Chertow & Koichi S. Kanaoka & Jooyoung Park, 2021. "Tracking the diffusion of industrial symbiosis scholarship using bibliometrics: Comparing across Web of Science, Scopus, and Google Scholar," Journal of Industrial Ecology, Yale University, vol. 25(4), pages 913-931, August.
    4. Saladini, Fabrizio & Patrizi, Nicoletta & Pulselli, Federico M. & Marchettini, Nadia & Bastianoni, Simone, 2016. "Guidelines for emergy evaluation of first, second and third generation biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 221-227.
    5. Chen, Shaoqing & Chen, Bin, 2012. "Sustainability and future alternatives of biogas-linked agrosystem (BLAS) in China: An emergy synthesis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3948-3959.
    6. Yang, Jin & Chen, Bin, 2016. "Emergy-based sustainability evaluation of wind power generation systems," Applied Energy, Elsevier, vol. 177(C), pages 239-246.
    7. Lu, Hongfang & Lin, Bin-Le & Campbell, Daniel E. & Sagisaka, Masayuki & Ren, Hai, 2012. "Biofuel vs. biodiversity? Integrated emergy and economic cost-benefit evaluation of rice-ethanol production in Japan," Energy, Elsevier, vol. 46(1), pages 442-450.
    8. Yang, Q. & Chen, G.Q. & Liao, S. & Zhao, Y.H. & Peng, H.W. & Chen, H.P., 2013. "Environmental sustainability of wind power: An emergy analysis of a Chinese wind farm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 229-239.
    9. Darshini, Dina & Dwivedi, Puneet & Glenk, Klaus, 2013. "Capturing stakeholders´ views on oil palm-based biofuel and biomass utilisation in Malaysia," Energy Policy, Elsevier, vol. 62(C), pages 1128-1137.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wiraditma Prananta & Ida Kubiszewski, 2021. "Assessment of Indonesia’s Future Renewable Energy Plan: A Meta-Analysis of Biofuel Energy Return on Investment (EROI)," Energies, MDPI, vol. 14(10), pages 1-15, May.
    2. Polprasert, Chongchin & Patthanaissaranukool, Withida & Englande, Andrew J., 2015. "A choice between RBD (refined, bleached, and deodorized) palm olein and palm methyl ester productions from carbon movement categorization," Energy, Elsevier, vol. 88(C), pages 610-620.
    3. Hassan, Mohd Nor Azman & Jaramillo, Paulina & Griffin, W. Michael, 2011. "Life cycle GHG emissions from Malaysian oil palm bioenergy development: The impact on transportation sector's energy security," Energy Policy, Elsevier, vol. 39(5), pages 2615-2625, May.
    4. Goh, Chun Sheng & Lee, Keat Teong, 2011. "Second-generation biofuel (SGB) in Southeast Asia via lignocellulosic biorefinery: Penny-foolish but pound-wise," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2714-2718, August.
    5. de Castro, Carlos & Carpintero, Óscar & Frechoso, Fernando & Mediavilla, Margarita & de Miguel, Luis J., 2014. "A top-down approach to assess physical and ecological limits of biofuels," Energy, Elsevier, vol. 64(C), pages 506-512.
    6. Saladini, Fabrizio & Patrizi, Nicoletta & Pulselli, Federico M. & Marchettini, Nadia & Bastianoni, Simone, 2016. "Guidelines for emergy evaluation of first, second and third generation biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 221-227.
    7. Iriarte, Alfredo & Rieradevall, Joan & Gabarrell, Xavier, 2012. "Transition towards a more environmentally sustainable biodiesel in South America: The case of Chile," Applied Energy, Elsevier, vol. 91(1), pages 263-273.
    8. Castanheira, Érica Geraldes & Acevedo, Helmer & Freire, Fausto, 2014. "Greenhouse gas intensity of palm oil produced in Colombia addressing alternative land use change and fertilization scenarios," Applied Energy, Elsevier, vol. 114(C), pages 958-967.
    9. Patthanaissaranukool, Withida & Polprasert, Chongchin & Englande, Andrew J., 2013. "Potential reduction of carbon emissions from Crude Palm Oil production based on energy and carbon balances," Applied Energy, Elsevier, vol. 102(C), pages 710-717.
    10. Silalertruksa, Thapat & Gheewala, Shabbir H., 2012. "Environmental sustainability assessment of palm biodiesel production in Thailand," Energy, Elsevier, vol. 43(1), pages 306-314.
    11. Cho, Hyun Jun & Kim, Jin-Kuk & Ahmed, Faisal & Yeo, Yeong-Koo, 2013. "Life-cycle greenhouse gas emissions and energy balances of a biodiesel production from palm fatty acid distillate (PFAD)," Applied Energy, Elsevier, vol. 111(C), pages 479-488.
    12. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Mazaheri, Hossein, 2013. "A review on novel processes of biodiesel production from waste cooking oil," Applied Energy, Elsevier, vol. 104(C), pages 683-710.
    13. Demirbas, Ayhan, 2011. "Biodiesel from oilgae, biofixation of carbon dioxide by microalgae: A solution to pollution problems," Applied Energy, Elsevier, vol. 88(10), pages 3541-3547.
    14. Pandey, Krishan K. & Pragya, Namita & Sahoo, P.K., 2011. "Life cycle assessment of small-scale high-input Jatropha biodiesel production in India," Applied Energy, Elsevier, vol. 88(12), pages 4831-4839.
    15. Ozturk, Munir & Saba, Naheed & Altay, Volkan & Iqbal, Rizwan & Hakeem, Khalid Rehman & Jawaid, Mohammad & Ibrahim, Faridah Hanum, 2017. "Biomass and bioenergy: An overview of the development potential in Turkey and Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1285-1302.
    16. González-García, Sara & Iribarren, Diego & Susmozas, Ana & Dufour, Javier & Murphy, Richard J., 2012. "Life cycle assessment of two alternative bioenergy systems involving Salix spp. biomass: Bioethanol production and power generation," Applied Energy, Elsevier, vol. 95(C), pages 111-122.
    17. Boey, Peng-Lim & Ganesan, Shangeetha & Lim, Sze-Xooi & Lim, Sau-Lai & Maniam, Gaanty Pragas & Khairuddean, Melati, 2011. "Utilization of BA (boiler ash) as catalyst for transesterification of palm olein," Energy, Elsevier, vol. 36(10), pages 5791-5796.
    18. Yoon, S.-Y. & Han, S.-H. & Shin, S.-J., 2014. "The effect of hemicelluloses and lignin on acid hydrolysis of cellulose," Energy, Elsevier, vol. 77(C), pages 19-24.
    19. Sanjid, A. & Masjuki, H.H. & Kalam, M.A. & Rahman, S.M. Ashrafur & Abedin, M.J. & Palash, S.M., 2013. "Impact of palm, mustard, waste cooking oil and Calophyllum inophyllum biofuels on performance and emission of CI engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 664-682.
    20. Zhang, Long & Bai, Wuliyasu, 2021. "Sustainability of crop–based biodiesel for transportation in China: Barrier analysis and life cycle ecological footprint calculations," Technological Forecasting and Social Change, Elsevier, vol. 164(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:14:y:2010:i:9:p:2986-2995. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.