Enzymatic saccharification and liquid state fermentation of hydrothermal pretreated Tunisian Luffa cylindrica (L.) fibers for cellulosic bioethanol production
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2017.07.108
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Gonçalves, Fabiano Avelino & Ruiz, Héctor A. & Silvino dos Santos, Everaldo & Teixeira, José A. & de Macedo, Gorete Ribeiro, 2016. "Bioethanol production by Saccharomyces cerevisiae, Pichia stipitis and Zymomonas mobilis from delignified coconut fibre mature and lignin extraction according to biorefinery concept," Renewable Energy, Elsevier, vol. 94(C), pages 353-365.
- Haghighi Mood, Sohrab & Hossein Golfeshan, Amir & Tabatabaei, Meisam & Salehi Jouzani, Gholamreza & Najafi, Gholam Hassan & Gholami, Mehdi & Ardjmand, Mehdi, 2013. "Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 77-93.
- Cripwell, Rosemary & Favaro, Lorenzo & Rose, Shaunita H. & Basaglia, Marina & Cagnin, Lorenzo & Casella, Sergio & van Zyl, Willem, 2015. "Utilisation of wheat bran as a substrate for bioethanol production using recombinant cellulases and amylolytic yeast," Applied Energy, Elsevier, vol. 160(C), pages 610-617.
- Mazaheri, Davood & Shojaosadati, Seyed Abbas & Mousavi, Seyyed Mohammad & Hejazi, Parisa & Saharkhiz, Saeed, 2012. "Bioethanol production from carob pods by solid-state fermentation with Zymomonas mobilis," Applied Energy, Elsevier, vol. 99(C), pages 372-378.
- Baskar, G. & Naveen Kumar, R. & Heronimus Melvin, X. & Aiswarya, R. & Soumya, S., 2016. "Sesbania aculeate biomass hydrolysis using magnetic nanobiocomposite of cellulase for bioethanol production," Renewable Energy, Elsevier, vol. 98(C), pages 23-28.
- Thangavelu, Saravana Kannan & Ahmed, Abu Saleh & Ani, Farid Nasir, 2014. "Bioethanol production from sago pith waste using microwave hydrothermal hydrolysis accelerated by carbon dioxide," Applied Energy, Elsevier, vol. 128(C), pages 277-283.
- Liu, Yunyun & Zhang, Yu & Xu, Jingliang & Sun, Yongming & Yuan, Zhenhong & Xie, Jun, 2015. "Consolidated bioprocess for bioethanol production with alkali-pretreated sugarcane bagasse," Applied Energy, Elsevier, vol. 157(C), pages 517-522.
- Kouteu Nanssou, Paul Alain & Jiokap Nono, Yvette & Kapseu, César, 2016. "Pretreatment of cassava stems and peelings by thermohydrolysis to enhance hydrolysis yield of cellulose in bioethanol production process," Renewable Energy, Elsevier, vol. 97(C), pages 252-265.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sahu, Omprakash, 2021. "Appropriateness of rose (Rosa hybrida) for bioethanol conversion with enzymatic hydrolysis: Sustainable development on green fuel production," Energy, Elsevier, vol. 232(C).
- Zhao, Chen & Zou, Zongsheng & Li, Jisheng & Jia, Honglei & Liesche, Johannes & Fang, Hao & Chen, Shaolin, 2017. "A novel and efficient bioprocess from steam exploded corn stover to ethanol in the context of on-site cellulase production," Energy, Elsevier, vol. 123(C), pages 499-510.
- Aditiya, H.B. & Mahlia, T.M.I. & Chong, W.T. & Nur, Hadi & Sebayang, A.H., 2016. "Second generation bioethanol production: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 631-653.
- Gabriel S. Aruwajoye & Alaika Kassim & Akshay K. Saha & Evariste B. Gueguim Kana, 2020. "Prospects for the Improvement of Bioethanol and Biohydrogen Production from Mixed Starch-Based Agricultural Wastes," Energies, MDPI, vol. 13(24), pages 1-22, December.
- Kostas, Emily T. & Beneroso, Daniel & Robinson, John P., 2017. "The application of microwave heating in bioenergy: A review on the microwave pre-treatment and upgrading technologies for biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 12-27.
- Almohammed, Fouad & Mhemdi, Houcine & Vorobiev, Eugène, 2016. "Pulsed electric field treatment of sugar beet tails as a sustainable feedstock for bioethanol production," Applied Energy, Elsevier, vol. 162(C), pages 49-57.
- Thangavelu, Saravana Kannan & Ahmed, Abu Saleh & Ani, Farid Nasir, 2016. "Review on bioethanol as alternative fuel for spark ignition engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 820-835.
- Ezeilo, Uchenna R. & Wahab, Roswanira Abdul & Mahat, Naji Arafat, 2020. "Optimization studies on cellulase and xylanase production by Rhizopus oryzae UC2 using raw oil palm frond leaves as substrate under solid state fermentation," Renewable Energy, Elsevier, vol. 156(C), pages 1301-1312.
- Sajid, Zaman, 2021. "A dynamic risk assessment model to assess the impact of the coronavirus (COVID-19) on the sustainability of the biomass supply chain: A case study of a U.S. biofuel industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
- Liu, Zhanglin & Wan, Xue & Wang, Qing & Tian, Dong & Hu, Jinguang & Huang, Mei & Shen, Fei & Zeng, Yongmei, 2021. "Performances of a multi-product strategy for bioethanol, lignin, and ultra-high surface area carbon from lignocellulose by PHP (phosphoric acid plus hydrogen peroxide) pretreatment platform," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
- Rodriguez, Cristina & Alaswad, A. & Benyounis, K.Y. & Olabi, A.G., 2017. "Pretreatment techniques used in biogas production from grass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1193-1204.
- Malherbe, Sarel J.M. & Cripwell, Rosemary A. & Favaro, Lorenzo & van Zyl, Willem H. & Viljoen-Bloom, Marinda, 2023. "Triticale and sorghum as feedstock for bioethanol production via consolidated bioprocessing," Renewable Energy, Elsevier, vol. 206(C), pages 498-505.
- Hanaoka, Toshiaki & Fujimoto, Shinji & Kihara, Hideyuki, 2019. "Improvement of the 1,3-butadiene production process from lignin – A comparison with the gasification power generation process," Renewable Energy, Elsevier, vol. 135(C), pages 1303-1313.
- Shirkavand, Ehsan & Baroutian, Saeid & Gapes, Daniel J. & Young, Brent R., 2016. "Combination of fungal and physicochemical processes for lignocellulosic biomass pretreatment – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 217-234.
- Blessing Chidinma Nwachukwu & Ayansina Segun Ayangbenro & Olubukola Oluranti Babalola, 2021. "Elucidating the Rhizosphere Associated Bacteria for Environmental Sustainability," Agriculture, MDPI, vol. 11(1), pages 1-18, January.
- Zhao, Xuebing & Liu, Wei & Deng, Yulin & Zhu, J.Y., 2017. "Low-temperature microbial and direct conversion of lignocellulosic biomass to electricity: Advances and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 268-282.
- Rosa Mahtout & Víctor Manuel Ortiz-Martínez & María José Salar-García & Isabel Gracia & Francisco José Hernández-Fernández & Antonia Pérez de los Ríos & Farid Zaidia & Sergio Sanchez-Segado & Luis Jav, 2018. "Algerian Carob Tree Products: A Comprehensive Valorization Analysis and Future Prospects," Sustainability, MDPI, vol. 10(1), pages 1-10, January.
- Song, Younho & Cho, Eun Jin & Park, Chan Song & Oh, Chi Hoon & Park, Bok-Jae & Bae, Hyeun-Jong, 2019. "A strategy for sequential fermentation by Saccharomyces cerevisiae and Pichia stipitis in bioethanol production from hardwoods," Renewable Energy, Elsevier, vol. 139(C), pages 1281-1289.
- Rooni, Vahur & Raud, Merlin & Kikas, Timo, 2017. "The freezing pre-treatment of lignocellulosic material: A cheap alternative for Nordic countries," Energy, Elsevier, vol. 139(C), pages 1-7.
- da Silva, Francinaldo Leite & de Oliveira Campos, Alan & dos Santos, Davi Alves & Batista Magalhães, Emilianny Rafaely & de Macedo, Gorete Ribeiro & dos Santos, Everaldo Silvino, 2018. "Valorization of an agroextractive residue—Carnauba straw—for the production of bioethanol by simultaneous saccharification and fermentation (SSF)," Renewable Energy, Elsevier, vol. 127(C), pages 661-669.
More about this item
Keywords
Luffa cylindrica; Hydrothermal pretreatment; Enzymatic saccharification; Liquid state fermentation LSF; Cellulosic bioethanol;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:114:y:2017:i:pb:p:1209-1213. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.