IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v113y2017icp85-93.html
   My bibliography  Save this article

An experimental and numerical investigation on the power performance of 150 kW horizontal axis wind turbine

Author

Listed:
  • Lin, Yan-Ting
  • Chiu, Pao-Hsiung
  • Huang, Chin-Cheng

Abstract

In this paper, the computational fluid dynamics (CFD) based blade design simulations is performed to study the 150 kW horizontal axis wind turbine. Reynolds-averaged Navier–Stokes equations and RNG k-ε turbulence model are applied for computational simulations to predict turbulent flow. The predicted results show that under the 12 m/s rated wind speed, the output power are 180 kW, 82 kW and 56 kW on the pitch angle of 5, 15 and 30°, respectively. The maximum aerodynamic performance of 0.42 can be achieved on the pitch angle of 5 with TSR of 3.6. In order to validate the design, output of torque and power performance of the wind turbine under various wind speed have been measured. The comparisons demonstrate the reasonable agreements between experimental and numerical data under the pitch angle of 5° and 6–10 m/s wind speed.

Suggested Citation

  • Lin, Yan-Ting & Chiu, Pao-Hsiung & Huang, Chin-Cheng, 2017. "An experimental and numerical investigation on the power performance of 150 kW horizontal axis wind turbine," Renewable Energy, Elsevier, vol. 113(C), pages 85-93.
  • Handle: RePEc:eee:renene:v:113:y:2017:i:c:p:85-93
    DOI: 10.1016/j.renene.2017.05.065
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117304573
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.05.065?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lanzafame, R. & Mauro, S. & Messina, M., 2013. "Wind turbine CFD modeling using a correlation-based transitional model," Renewable Energy, Elsevier, vol. 52(C), pages 31-39.
    2. Fei-Bin Hsiao & Chi-Jeng Bai & Wen-Tong Chong, 2013. "The Performance Test of Three Different Horizontal Axis Wind Turbine (HAWT) Blade Shapes Using Experimental and Numerical Methods," Energies, MDPI, vol. 6(6), pages 1-20, June.
    3. Li, Yuwei & Paik, Kwang-Jun & Xing, Tao & Carrica, Pablo M., 2012. "Dynamic overset CFD simulations of wind turbine aerodynamics," Renewable Energy, Elsevier, vol. 37(1), pages 285-298.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haojun Tang & Kit-Ming Lam & Kei-Man Shum & Yongle Li, 2019. "Wake Effect of a Horizontal Axis Wind Turbine on the Performance of a Downstream Turbine," Energies, MDPI, vol. 12(12), pages 1-18, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hailay Kiros Kelele & Torbjørn Kirstian Nielsen & Lars Froyd & Mulu Bayray Kahsay, 2020. "Catchment Based Aerodynamic Performance Analysis of Small Wind Turbine Using a Single Blade Concept for a Low Cost of Energy," Energies, MDPI, vol. 13(21), pages 1-20, November.
    2. Jijian Lian & Yaya Jia & Haijun Wang & Fang Liu, 2016. "Numerical Study of the Aerodynamic Loads on Offshore Wind Turbines under Typhoon with Full Wind Direction," Energies, MDPI, vol. 9(8), pages 1-21, August.
    3. Lee, Kyoungsoo & Huque, Ziaul & Kommalapati, Raghava & Han, Sang-Eul, 2016. "Evaluation of equivalent structural properties of NREL phase VI wind turbine blade," Renewable Energy, Elsevier, vol. 86(C), pages 796-818.
    4. Miller, Aaron & Chang, Byungik & Issa, Roy & Chen, Gerald, 2013. "Review of computer-aided numerical simulation in wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 122-134.
    5. Liu, Pengyin & Yu, Guohua & Zhu, Xiaocheng & Du, Zhaohui, 2014. "Unsteady aerodynamic prediction for dynamic stall of wind turbine airfoils with the reduced order modeling," Renewable Energy, Elsevier, vol. 69(C), pages 402-409.
    6. Ali, Qazi Shahzad & Kim, Man-Hoe, 2021. "Design and performance analysis of an airborne wind turbine for high-altitude energy harvesting," Energy, Elsevier, vol. 230(C).
    7. Abdulqadir, Sherwan A. & Iacovides, Hector & Nasser, Adel, 2017. "The physical modelling and aerodynamics of turbulent flows around horizontal axis wind turbines," Energy, Elsevier, vol. 119(C), pages 767-799.
    8. Bai, Chi-Jeng & Wang, Wei-Cheng, 2016. "Review of computational and experimental approaches to analysis of aerodynamic performance in horizontal-axis wind turbines (HAWTs)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 506-519.
    9. Thé, Jesse & Yu, Hesheng, 2017. "A critical review on the simulations of wind turbine aerodynamics focusing on hybrid RANS-LES methods," Energy, Elsevier, vol. 138(C), pages 257-289.
    10. Amiri, Mojtaba Maali & Shadman, Milad & Estefen, Segen F., 2020. "URANS simulations of a horizontal axis wind turbine under stall condition using Reynolds stress turbulence models," Energy, Elsevier, vol. 213(C).
    11. Yilmaz, Oktay, 2023. "Low-speed, low induction multi-blade rotor for energy efficient small wind turbines," Energy, Elsevier, vol. 282(C).
    12. Lee, Kyoungsoo & Huque, Ziaul & Kommalapati, Raghava & Han, Sang-Eul, 2017. "Fluid-structure interaction analysis of NREL phase VI wind turbine: Aerodynamic force evaluation and structural analysis using FSI analysis," Renewable Energy, Elsevier, vol. 113(C), pages 512-531.
    13. Farhan, A. & Hassanpour, A. & Burns, A. & Motlagh, Y. Ghaffari, 2019. "Numerical study of effect of winglet planform and airfoil on a horizontal axis wind turbine performance," Renewable Energy, Elsevier, vol. 131(C), pages 1255-1273.
    14. Nour Khlaifat & Ali Altaee & John Zhou & Yuhan Huang & Ali Braytee, 2020. "Optimization of a Small Wind Turbine for a Rural Area: A Case Study of Deniliquin, New South Wales, Australia," Energies, MDPI, vol. 13(9), pages 1-26, May.
    15. Su, Jie & Lei, Hang & Zhou, Dai & Han, Zhaolong & Bao, Yan & Zhu, Hongbo & Zhou, Lei, 2019. "Aerodynamic noise assessment for a vertical axis wind turbine using Improved Delayed Detached Eddy Simulation," Renewable Energy, Elsevier, vol. 141(C), pages 559-569.
    16. Mauro, S. & Lanzafame, R. & Messina, M. & Brusca, S., 2023. "On the importance of the root-to-hub adapter effects on HAWT performance: A CFD-BEM numerical investigation," Energy, Elsevier, vol. 275(C).
    17. Rocha, P. A. Costa & Rocha, H. H. Barbosa & Carneiro, F. O. Moura & da Silva, M. E. Vieira & de Andrade, C. Freitas, 2016. "A case study on the calibration of the k–ω SST (shear stress transport) turbulence model for small scale wind turbines designed with cambered and symmetrical airfoils," Energy, Elsevier, vol. 97(C), pages 144-150.
    18. Sun-Seok Byeon & Jae-Young Lee & Youn-Jea Kim, 2017. "Performance Characteristics of a 4 × 6 Oil-Free Twin-Screw Compressor," Energies, MDPI, vol. 10(7), pages 1-16, July.
    19. Jinghua Lin & You-Lin Xu & Yong Xia & Chao Li, 2019. "Structural Analysis of Large-Scale Vertical-Axis Wind Turbines, Part I: Wind Load Simulation," Energies, MDPI, vol. 12(13), pages 1-31, July.
    20. Youjin Kim & Galih Bangga & Antonio Delgado, 2020. "Investigations of HAWT Airfoil Shape Characteristics and 3D Rotational Augmentation Sensitivity Toward the Aerodynamic Performance Improvement," Sustainability, MDPI, vol. 12(18), pages 1-22, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:113:y:2017:i:c:p:85-93. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.