IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v251y2024ics095183202400396x.html
   My bibliography  Save this article

Condition monitoring based on corrupted multiple time series with common trends

Author

Listed:
  • Wei, Yujie
  • Pan, Ershun
  • Ye, Zhi-Sheng

Abstract

Condition monitoring is a fundamental task in the reliability engineering and operation management of a complex industrial system. It aims to detect faults based on sensing data but poses significant challenges when dealing with corrupted multiple time series data in many real-world applications. These time series typically exhibit similar changing patterns influenced by common trends (e.g., workload, ambient condition) and physical relationships among corresponding variables, and are often significantly corrupted large outliers (e.g., transmission interruption). Although several traditional common trend models have been employed to analyze such condition monitoring data in the literature, they are fully parametric, constrained by restrictive assumptions, and not robust to outliers. In this article, we propose a novel semiparametric decomposition model to analyze a set of monitored time series and separate it into common, idiosyncratic, and sparse components, under relatively mild assumptions. We also introduce effective algorithms for model estimation and a monitoring scheme for fault detection. The numerical and real case studies demonstrate the superiority of the proposed method over existing approaches, in terms of both decomposition accuracy and detection performance for system faults.

Suggested Citation

  • Wei, Yujie & Pan, Ershun & Ye, Zhi-Sheng, 2024. "Condition monitoring based on corrupted multiple time series with common trends," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
  • Handle: RePEc:eee:reensy:v:251:y:2024:i:c:s095183202400396x
    DOI: 10.1016/j.ress.2024.110324
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S095183202400396X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110324?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:251:y:2024:i:c:s095183202400396x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.