IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v113y2017icp1-10.html
   My bibliography  Save this article

Scenario adjustable scheduling model with robust constraints for energy intensive corporate microgrid with wind power

Author

Listed:
  • Liu, Kun
  • Gao, Feng

Abstract

With the development of wind power technology, wind power integration supplies an effective and practical way to decrease production cost for energy intensive corporate microgrid. Then the scenario adjustable scheduling model with robust constraints is built in this paper. In this model, both energy cost and wind power utilization are taken into account. Moreover, the objective is to minimize the electricity cost which is formulated by scenario tree and the wind power utilization is formulated as a robust constraint. In addition, the capacity of wind power accommodation is also analyzed. Finally, a corporate microgrid is tested. The results show that the capacity of wind power accommodation with 15% flexible load is increased 11.52% which is 5.23% more than that without re-scheduling process. And the energy expected cost with re-scheduling process is 715823$ which is 4.69% less than that without re-scheduling process.

Suggested Citation

  • Liu, Kun & Gao, Feng, 2017. "Scenario adjustable scheduling model with robust constraints for energy intensive corporate microgrid with wind power," Renewable Energy, Elsevier, vol. 113(C), pages 1-10.
  • Handle: RePEc:eee:renene:v:113:y:2017:i:c:p:1-10
    DOI: 10.1016/j.renene.2017.05.056
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117304421
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.05.056?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    2. Odellia Boni & Aharon Ben-Tal, 2008. "Adjustable robust counterpart of conic quadratic problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 68(2), pages 211-233, October.
    3. Kong, Haining & Qi, Ershi & Li, Hui & Li, Gang & Zhang, Xing, 2010. "An MILP model for optimization of byproduct gases in the integrated iron and steel plant," Applied Energy, Elsevier, vol. 87(7), pages 2156-2163, July.
    4. Javed Iqbal, 2012. "Stock Market in Pakistan," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 11(1), pages 61-91, April.
    5. Alan Barrett & Séamus McGuiness, 2012. "The Irish Labour Market and the Great Recession," ifo DICE Report, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 10(2), pages 27-33, 08.
    6. Sha Zhang & Jenny Van Doorn & Peter. S.H. Leeflang, 2012. "Changing consumer markets and marketing in China," International Journal of Business and Emerging Markets, Inderscience Enterprises Ltd, vol. 4(4), pages 328-351.
    7. Kuznetsova, Elizaveta & Li, Yan-Fu & Ruiz, Carlos & Zio, Enrico, 2014. "An integrated framework of agent-based modelling and robust optimization for microgrid energy management," Applied Energy, Elsevier, vol. 129(C), pages 70-88.
    8. ., 2012. "The business cycle: market economy perspectives," Chapters, in: Markets, Planning and the Moral Economy, chapter 4, pages i-ii, Edward Elgar Publishing.
    9. Jitka Dupačová & Giorgio Consigli & Stein Wallace, 2000. "Scenarios for Multistage Stochastic Programs," Annals of Operations Research, Springer, vol. 100(1), pages 25-53, December.
    10. Yunlong Gao & Feng Gao & Qiaozhu Zhai & Xiaohong Guan, 2013. "Self-balancing dynamic scheduling of electrical energy for energy-intensive enterprises," International Journal of Systems Science, Taylor & Francis Journals, vol. 44(6), pages 1006-1025.
    11. Ferreira, R.S. & Barroso, L.A. & Carvalho, M.M., 2012. "Demand response models with correlated price data: A robust optimization approach," Applied Energy, Elsevier, vol. 96(C), pages 133-149.
    12. Pinto, Mauro S.S. & Miranda, Vladimiro & Saavedra, Osvaldo R., 2016. "Risk and unit commitment decisions in scenarios of wind power uncertainty," Renewable Energy, Elsevier, vol. 97(C), pages 550-558.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruifeng Shi & Shaopeng Li & Changhao Sun & Kwang Y. Lee, 2018. "Adjustable Robust Optimization Algorithm for Residential Microgrid Multi-Dispatch Strategy with Consideration of Wind Power and Electric Vehicles," Energies, MDPI, vol. 11(8), pages 1-22, August.
    2. Ali Haddad-Sisakht & Sarah M. Ryan, 2018. "Conditions under which adjustability lowers the cost of a robust linear program," Annals of Operations Research, Springer, vol. 269(1), pages 185-204, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Kun & Guan, Xiaohong & Gao, Feng & Zhai, Qiaozhu & Wu, Jiang, 2015. "Self-balancing robust scheduling with flexible batch loads for energy intensive corporate microgrid," Applied Energy, Elsevier, vol. 159(C), pages 391-400.
    2. Akhtar Hussain & Van-Hai Bui & Hak-Man Kim, 2016. "Robust Optimization-Based Scheduling of Multi-Microgrids Considering Uncertainties," Energies, MDPI, vol. 9(4), pages 1-21, April.
    3. Mohsen Jalalimajidi & SM Seyedhosseini & Ahmad Makui & Masoud Babakhani, 2018. "Developing a comprehensive model for new energy replacement in the country’s development program using a robust optimization approach," Energy & Environment, , vol. 29(6), pages 868-890, September.
    4. Jiang, Sheng-Long & Peng, Gongzhuang & Bogle, I. David L. & Zheng, Zhong, 2022. "Two-stage robust optimization approach for flexible oxygen distribution under uncertainty in integrated iron and steel plants," Applied Energy, Elsevier, vol. 306(PB).
    5. Correa-Florez, Carlos Adrian & Michiorri, Andrea & Kariniotakis, Georges, 2018. "Robust optimization for day-ahead market participation of smart-home aggregators," Applied Energy, Elsevier, vol. 229(C), pages 433-445.
    6. Zhang, Bingying & Li, Qiqiang & Wang, Luhao & Feng, Wei, 2018. "Robust optimization for energy transactions in multi-microgrids under uncertainty," Applied Energy, Elsevier, vol. 217(C), pages 346-360.
    7. Huang, Lu & Liu, Yizao, 2014. "The Dynamics of Brand Value in the Carbonated Soft Drinks Industry," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 172389, Agricultural and Applied Economics Association.
    8. Bakker, Hannah & Dunke, Fabian & Nickel, Stefan, 2020. "A structuring review on multi-stage optimization under uncertainty: Aligning concepts from theory and practice," Omega, Elsevier, vol. 96(C).
    9. Carlos Adrian Correa-Florez & Andrea Michiorri & Georges Kariniotakis, 2019. "Comparative Analysis of Adjustable Robust Optimization Alternatives for the Participation of Aggregated Residential Prosumers in Electricity Markets," Energies, MDPI, vol. 12(6), pages 1-27, March.
    10. Nicolas Kämmerling & Jannis Kurtz, 2020. "Oracle-based algorithms for binary two-stage robust optimization," Computational Optimization and Applications, Springer, vol. 77(2), pages 539-569, November.
    11. Adham I. Tammam & Miguel F. Anjos & Michel Gendreau, 2020. "Balancing supply and demand in the presence of renewable generation via demand response for electric water heaters," Annals of Operations Research, Springer, vol. 292(2), pages 753-770, September.
    12. Han, Biao & Shang, Chao & Huang, Dexian, 2021. "Multiple kernel learning-aided robust optimization: Learning algorithm, computational tractability, and usage in multi-stage decision-making," European Journal of Operational Research, Elsevier, vol. 292(3), pages 1004-1018.
    13. Jianwen Ren & Yingqiang Xu & Shiyuan Wang, 2018. "A Distributed Robust Dispatch Approach for Interconnected Systems with a High Proportion of Wind Power Penetration," Energies, MDPI, vol. 11(4), pages 1-18, April.
    14. Li, Xingchen & Xu, Guangcheng & Wu, Jie & Xu, Chengzhen & Zhu, Qingyuan, 2024. "Evaluation of bank efficiency by considering the uncertainty of nonperforming loans," Omega, Elsevier, vol. 126(C).
    15. Wenqing Chen & Melvyn Sim & Jie Sun & Chung-Piaw Teo, 2010. "From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization," Operations Research, INFORMS, vol. 58(2), pages 470-485, April.
    16. Zhi Chen & Melvyn Sim & Huan Xu, 2019. "Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," Operations Research, INFORMS, vol. 67(5), pages 1328-1344, September.
    17. Stefan Mišković, 2017. "A VNS-LP algorithm for the robust dynamic maximal covering location problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(4), pages 1011-1033, October.
    18. Liu, Pei-chen Barry & Hansen, Mark & Mukherjee, Avijit, 2008. "Scenario-based air traffic flow management: From theory to practice," Transportation Research Part B: Methodological, Elsevier, vol. 42(7-8), pages 685-702, August.
    19. Gulpinar, Nalan & Rustem, Berc & Settergren, Reuben, 2004. "Simulation and optimization approaches to scenario tree generation," Journal of Economic Dynamics and Control, Elsevier, vol. 28(7), pages 1291-1315, April.
    20. Sarhadi, Hassan & Naoum-Sawaya, Joe & Verma, Manish, 2020. "A robust optimization approach to locating and stockpiling marine oil-spill response facilities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:113:y:2017:i:c:p:1-10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.