IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v159y2015icp391-400.html
   My bibliography  Save this article

Self-balancing robust scheduling with flexible batch loads for energy intensive corporate microgrid

Author

Listed:
  • Liu, Kun
  • Guan, Xiaohong
  • Gao, Feng
  • Zhai, Qiaozhu
  • Wu, Jiang

Abstract

With the development of microgrid technology, for an energy intensive corporate such as an iron and steel plant energy consumptions and costs can be saved significantly by achieving the balance between self-generation and consumption. In this paper, we present a self-balancing and robust scheduling model with flexible batch loads for an energy intensive corporate. The model is a multi-level optimization model with the objective to minimize the unbalance cost in the worst case. Load following properties are given to determine whether the uncertain loads can be followed or not, and the self-balancing capability of an energy intensive corporate is analyzed. The problem is equivalently converted from the multi-level model to a single-level optimization model with a set of constraints. In this way, the iteration between the outer and inner level can be avoided. Case study based on an energy intensive corporate microgrid is tested and the results show that the unbalance cost can be significantly reduced by using the robust self-balancing model. In addition, compared the approach method with iterative solving method, computational efficiency can be improved and local optimum can be avoided.

Suggested Citation

  • Liu, Kun & Guan, Xiaohong & Gao, Feng & Zhai, Qiaozhu & Wu, Jiang, 2015. "Self-balancing robust scheduling with flexible batch loads for energy intensive corporate microgrid," Applied Energy, Elsevier, vol. 159(C), pages 391-400.
  • Handle: RePEc:eee:appene:v:159:y:2015:i:c:p:391-400
    DOI: 10.1016/j.apenergy.2015.09.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915010843
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.09.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kong, Haining & Qi, Ershi & Li, Hui & Li, Gang & Zhang, Xing, 2010. "An MILP model for optimization of byproduct gases in the integrated iron and steel plant," Applied Energy, Elsevier, vol. 87(7), pages 2156-2163, July.
    2. Behrangrad, Mahdi, 2015. "A review of demand side management business models in the electricity market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 270-283.
    3. Zhao, Xiancong & Bai, Hao & Lu, Xin & Shi, Qi & Han, Jiehai, 2015. "A MILP model concerning the optimisation of penalty factors for the short-term distribution of byproduct gases produced in the iron and steel making process," Applied Energy, Elsevier, vol. 148(C), pages 142-158.
    4. Yunlong Gao & Feng Gao & Qiaozhu Zhai & Xiaohong Guan, 2013. "Self-balancing dynamic scheduling of electrical energy for energy-intensive enterprises," International Journal of Systems Science, Taylor & Francis Journals, vol. 44(6), pages 1006-1025.
    5. Kuznetsova, Elizaveta & Li, Yan-Fu & Ruiz, Carlos & Zio, Enrico, 2014. "An integrated framework of agent-based modelling and robust optimization for microgrid energy management," Applied Energy, Elsevier, vol. 129(C), pages 70-88.
    6. Finn, Paddy & Fitzpatrick, Colin, 2014. "Demand side management of industrial electricity consumption: Promoting the use of renewable energy through real-time pricing," Applied Energy, Elsevier, vol. 113(C), pages 11-21.
    7. Ashok, S., 2006. "Peak-load management in steel plants," Applied Energy, Elsevier, vol. 83(5), pages 413-424, May.
    8. Alan Barrett & Séamus McGuiness, 2012. "The Irish Labour Market and the Great Recession," ifo DICE Report, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 10(2), pages 27-33, 08.
    9. Wu, Zhou & Tazvinga, Henerica & Xia, Xiaohua, 2015. "Demand side management of photovoltaic-battery hybrid system," Applied Energy, Elsevier, vol. 148(C), pages 294-304.
    10. Javed Iqbal, 2012. "Stock Market in Pakistan," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 11(1), pages 61-91, April.
    11. ., 2012. "The business cycle: market economy perspectives," Chapters, in: Markets, Planning and the Moral Economy, chapter 4, pages i-ii, Edward Elgar Publishing.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weiwei Cui & Lin Li & Zhiqiang Lu, 2019. "Energy‐efficient scheduling for sustainable manufacturing systems with renewable energy resources," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(2), pages 154-173, March.
    2. Sreedharan, P. & Farbes, J. & Cutter, E. & Woo, C.K. & Wang, J., 2016. "Microgrid and renewable generation integration: University of California, San Diego," Applied Energy, Elsevier, vol. 169(C), pages 709-720.
    3. Chongxin Huang & Dong Yue & Song Deng & Jun Xie, 2017. "Optimal Scheduling of Microgrid with Multiple Distributed Resources Using Interval Optimization," Energies, MDPI, vol. 10(3), pages 1-23, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Kun & Gao, Feng, 2017. "Scenario adjustable scheduling model with robust constraints for energy intensive corporate microgrid with wind power," Renewable Energy, Elsevier, vol. 113(C), pages 1-10.
    2. Jiang, Sheng-Long & Wang, Meihong & Bogle, I. David L., 2023. "Plant-wide byproduct gas distribution under uncertainty in iron and steel industry via quantile forecasting and robust optimization," Applied Energy, Elsevier, vol. 350(C).
    3. Jiang, Sheng-Long & Peng, Gongzhuang & Bogle, I. David L. & Zheng, Zhong, 2022. "Two-stage robust optimization approach for flexible oxygen distribution under uncertainty in integrated iron and steel plants," Applied Energy, Elsevier, vol. 306(PB).
    4. Kirchem, Dana & Lynch, Muireann Á & Casey, Eoin & Bertsch, Valentin, 2019. "Demand response within the energy-for-water-nexus: A review," Papers WP637, Economic and Social Research Institute (ESRI).
    5. Juxian Hao & Xiancong Zhao & Hao Bai, 2017. "Collaborative Scheduling between OSPPs and Gasholders in Steel Mill under Time-of-Use Power Price," Energies, MDPI, vol. 10(8), pages 1-10, August.
    6. Baxter Williams & Daniel Bishop & Patricio Gallardo & J. Geoffrey Chase, 2023. "Demand Side Management in Industrial, Commercial, and Residential Sectors: A Review of Constraints and Considerations," Energies, MDPI, vol. 16(13), pages 1-28, July.
    7. Sergio García García & Vicente Rodríguez Montequín & Marina Díaz Piloñeta & Susana Torno Lougedo, 2021. "Multi-Objective Optimization of Steel Off-Gas in Cogeneration Using the ε-Constraint Method: A Combined Coke Oven and Converter Gas Case Study," Energies, MDPI, vol. 14(10), pages 1-21, May.
    8. Loganthurai, P. & Rajasekaran, V. & Gnanambal, K., 2016. "Evolutionary algorithm based optimum scheduling of processing units in rice industry to reduce peak demand," Energy, Elsevier, vol. 107(C), pages 419-430.
    9. Zhao, Xiancong & Bai, Hao & Shi, Qi & Lu, Xin & Zhang, Zhihui, 2017. "Optimal scheduling of a byproduct gas system in a steel plant considering time-of-use electricity pricing," Applied Energy, Elsevier, vol. 195(C), pages 100-113.
    10. Rajeev, T. & Ashok, S., 2015. "Dynamic load-shifting program based on a cloud computing framework to support the integration of renewable energy sources," Applied Energy, Elsevier, vol. 146(C), pages 141-149.
    11. Majid, A. & van Zyl, J.E. & Hall, J.W., 2022. "The influence of temporal variability and reservoir management on demand-response in the water sector," Applied Energy, Elsevier, vol. 305(C).
    12. Alasseri, Rajeev & Tripathi, Ashish & Joji Rao, T. & Sreekanth, K.J., 2017. "A review on implementation strategies for demand side management (DSM) in Kuwait through incentive-based demand response programs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 617-635.
    13. Huang, Lu & Liu, Yizao, 2014. "The Dynamics of Brand Value in the Carbonated Soft Drinks Industry," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 172389, Agricultural and Applied Economics Association.
    14. Trinadh Pamulapati & Muhammed Cavus & Ishioma Odigwe & Adib Allahham & Sara Walker & Damian Giaouris, 2022. "A Review of Microgrid Energy Management Strategies from the Energy Trilemma Perspective," Energies, MDPI, vol. 16(1), pages 1-34, December.
    15. Shi, Huaizhou & Blaauwbroek, Niels & Nguyen, Phuong H. & Kamphuis, René (I.G.), 2016. "Energy management in Multi-Commodity Smart Energy Systems with a greedy approach," Applied Energy, Elsevier, vol. 167(C), pages 385-396.
    16. Zare Oskouei, Morteza & Sadeghi Yazdankhah, Ahmad, 2017. "The role of coordinated load shifting and frequency-based pricing strategies in maximizing hybrid system profit," Energy, Elsevier, vol. 135(C), pages 370-381.
    17. de Oliveira Junior, Valter B. & Pena, João G. Coelho & Salles, José L. Félix, 2016. "An improved plant-wide multiperiod optimization model of a byproduct gas supply system in the iron and steel-making process," Applied Energy, Elsevier, vol. 164(C), pages 462-474.
    18. Lund, Peter D. & Lindgren, Juuso & Mikkola, Jani & Salpakari, Jyri, 2015. "Review of energy system flexibility measures to enable high levels of variable renewable electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 785-807.
    19. Xueying Sun & Zhuo Wang & Jingtao Hu, 2018. "Fuzzy Byproduct Gas Scheduling in the Steel Plant Considering Uncertainty and Risk Analysis," Energies, MDPI, vol. 11(10), pages 1-14, October.
    20. Zeng, Yujiao & Xiao, Xin & Li, Jie & Sun, Li & Floudas, Christodoulos A. & Li, Hechang, 2018. "A novel multi-period mixed-integer linear optimization model for optimal distribution of byproduct gases, steam and power in an iron and steel plant," Energy, Elsevier, vol. 143(C), pages 881-899.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:159:y:2015:i:c:p:391-400. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.