IDEAS home Printed from https://ideas.repec.org/a/taf/tsysxx/v44y2013i6p1006-1025.html
   My bibliography  Save this article

Self-balancing dynamic scheduling of electrical energy for energy-intensive enterprises

Author

Listed:
  • Yunlong Gao
  • Feng Gao
  • Qiaozhu Zhai
  • Xiaohong Guan

Abstract

Balancing production and consumption with self-generation capacity in energy-intensive enterprises has huge economic and environmental benefits. However, balancing production and consumption with self-generation capacity is a challenging task since the energy production and consumption must be balanced in real time with the criteria specified by power grid. In this article, a mathematical model for minimising the production cost with exactly realisable energy delivery schedule is formulated. And a dynamic programming (DP)-based self-balancing dynamic scheduling algorithm is developed to obtain the complete solution set for such a multiple optimal solutions problem. For each stage, a set of conditions are established to determine whether a feasible control trajectory exists. The state space under these conditions is partitioned into subsets and each subset is viewed as an aggregate state, the cost-to-go function is then expressed as a function of initial and terminal generation levels of each stage and is proved to be a staircase function with finite steps. This avoids the calculation of the cost-to-go of every state to resolve the issue of dimensionality in DP algorithm. In the backward sweep process of the algorithm, an optimal policy is determined to maximise the realisability of energy delivery schedule across the entire time horizon. And then in the forward sweep process, the feasible region of the optimal policy with the initial and terminal state at each stage is identified. Different feasible control trajectories can be identified based on the region; therefore, optimising for the feasible control trajectory is performed based on the region with economic and reliability objectives taken into account.

Suggested Citation

  • Yunlong Gao & Feng Gao & Qiaozhu Zhai & Xiaohong Guan, 2013. "Self-balancing dynamic scheduling of electrical energy for energy-intensive enterprises," International Journal of Systems Science, Taylor & Francis Journals, vol. 44(6), pages 1006-1025.
  • Handle: RePEc:taf:tsysxx:v:44:y:2013:i:6:p:1006-1025
    DOI: 10.1080/00207721.2011.652223
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207721.2011.652223
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207721.2011.652223?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Kun & Guan, Xiaohong & Gao, Feng & Zhai, Qiaozhu & Wu, Jiang, 2015. "Self-balancing robust scheduling with flexible batch loads for energy intensive corporate microgrid," Applied Energy, Elsevier, vol. 159(C), pages 391-400.
    2. Xingyu Shi & Zhongjing Ma, 2015. "An efficient game for vehicle-to-grid coordination problems in smart grids," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(15), pages 2686-2701, November.
    3. Liu, Kun & Gao, Feng, 2017. "Scenario adjustable scheduling model with robust constraints for energy intensive corporate microgrid with wind power," Renewable Energy, Elsevier, vol. 113(C), pages 1-10.
    4. Zheng, Lingwei & Zhou, Xingqiu & Qiu, Qi & Yang, Lan, 2020. "Day-ahead optimal dispatch of an integrated energy system considering time-frequency characteristics of renewable energy source output," Energy, Elsevier, vol. 209(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tsysxx:v:44:y:2013:i:6:p:1006-1025. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TSYS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.