IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v112y2017icp35-43.html
   My bibliography  Save this article

A study on the floating bridge type horizontal axis tidal current turbine for energy independent islands in Korea

Author

Listed:
  • Kim, Seung-Jun
  • Singh, Patrick Mark
  • Hyun, Beom-Soo
  • Lee, Young-Ho
  • Choi, Young-Do

Abstract

The tidal currents in the region of South-Western sea of Korea can be utilized for the development of tidal current power, benefiting many fishing nurseries and nearby islands. Furthermore, it can contribute to promoting energy independent islands. This study focuses on floating-bridge type small tidal current turbine, which can be installed between the small islands limited space unlike large tidal current turbines. The aim is to develop a floating-bridge type 15 kW-class small horizontal axis tidal current turbine. As part of the research for the reduced model experiment of hydrofoils, a 50 W-class horizontal axis tidal current turbine model was investigated. Therefore, for this study, blade design was carried out using two different hydrofoils (MNU26 and NACA63421). Performance and hydrodynamic characteristics are investigated by using computational fluid dynamics and experimental methods. Among the two blades, NACA63421 blade showed the best power coefficient at low Reynolds number, whereas MNU26 blade performed better for higher Reynolds number. The MNU26 hydrofoil was applied to the blade design from the previous study. The MNU26 hydrofoil has a 26% thickness in contrast to the NACA63421, which has a 21% thickness. This indicates that the MNU26 can be applied throughout the blade length for the 15 kW-class turbine whilst providing good structural strength.

Suggested Citation

  • Kim, Seung-Jun & Singh, Patrick Mark & Hyun, Beom-Soo & Lee, Young-Ho & Choi, Young-Do, 2017. "A study on the floating bridge type horizontal axis tidal current turbine for energy independent islands in Korea," Renewable Energy, Elsevier, vol. 112(C), pages 35-43.
  • Handle: RePEc:eee:renene:v:112:y:2017:i:c:p:35-43
    DOI: 10.1016/j.renene.2017.05.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014811730410X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.05.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bahaj, A.S. & Molland, A.F. & Chaplin, J.R. & Batten, W.M.J., 2007. "Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank," Renewable Energy, Elsevier, vol. 32(3), pages 407-426.
    2. Lee, Nak Joong & Kim, In Chul & Kim, Chang Goo & Hyun, Beom Soo & Lee, Young Ho, 2015. "Performance study on a counter-rotating tidal current turbine by CFD and model experimentation," Renewable Energy, Elsevier, vol. 79(C), pages 122-126.
    3. Do-Seong Byun & Deirdre E. Hart & Woo-Jin Jeong, 2013. "Tidal Current Energy Resources off the South and West Coasts of Korea: Preliminary Observation-Derived Estimates," Energies, MDPI, vol. 6(2), pages 1-13, January.
    4. Singh, Patrick Mark & Choi, Young-Do, 2014. "Shape design and numerical analysis on a 1 MW tidal current turbine for the south-western coast of Korea," Renewable Energy, Elsevier, vol. 68(C), pages 485-493.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ifaei, Pouya & Tayerani Charmchi, Amir Saman & Loy-Benitez, Jorge & Yang, Rebecca Jing & Yoo, ChangKyoo, 2022. "A data-driven analytical roadmap to a sustainable 2030 in South Korea based on optimal renewable microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    2. Chuhua Jiang & Xuedao Shu & Junhua Chen & Lingjie Bao & Hao Li, 2020. "Research on Performance Evaluation of Tidal Energy Turbine under Variable Velocity," Energies, MDPI, vol. 13(23), pages 1-14, November.
    3. Ramin Alipour & Roozbeh Alipour & Seyed Saeid Rahimian Koloor & Michal Petrů & Seyed Alireza Ghazanfari, 2020. "On the Performance of Small-Scale Horizontal Axis Tidal Current Turbines. Part 1: One Single Turbine," Sustainability, MDPI, vol. 12(15), pages 1-25, July.
    4. Hu, Huakun & Xue, Wendong & Jiang, Peng & Li, Yong, 2022. "Bibliometric analysis for ocean renewable energy: An comprehensive review for hotspots, frontiers, and emerging trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    5. Xiancheng Wang & Hao Li & Junhua Chen & Chuhua Jiang & Lingjie Bao, 2023. "Research on Solidity of Horizontal-Axis Tidal Current Turbine," Energies, MDPI, vol. 16(8), pages 1-17, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Xiaodong & Feng, Bo & Liu, Di & Wang, Yiming & Zhao, Haitao & Si, Yulin & Zhang, Dahai & Qian, Peng, 2022. "Study on two-rotor interaction of counter-rotating horizontal axis tidal turbine," Energy, Elsevier, vol. 241(C).
    2. Xu, Jian & Wang, Longyan & Yuan, Jianping & Luo, Zhaohui & Wang, Zilu & Zhang, Bowen & Tan, Andy C.C., 2024. "DLFSI: A deep learning static fluid-structure interaction model for hydrodynamic-structural optimization of composite tidal turbine blade," Renewable Energy, Elsevier, vol. 224(C).
    3. Mestres, Marc & Cerralbo, Pablo & Grifoll, Manel & Sierra, Joan Pau & Espino, Manuel, 2019. "Modelling assessment of the tidal stream resource in the Ria of Ferrol (NW Spain) using a year-long simulation," Renewable Energy, Elsevier, vol. 131(C), pages 811-817.
    4. Silva, Paulo Augusto Strobel Freitas & Shinomiya, Léo Daiki & de Oliveira, Taygoara Felamingo & Vaz, Jerson Rogério Pinheiro & Amarante Mesquita, André Luiz & Brasil Junior, Antonio Cesar Pinho, 2017. "Analysis of cavitation for the optimized design of hydrokinetic turbines using BEM," Applied Energy, Elsevier, vol. 185(P2), pages 1281-1291.
    5. In-cheol Kim & Joji Wata & Watchara Tongphong & Jong-Su Yoon & Young-Ho Lee, 2020. "Magnetic Coupling for a 10 kW Tidal Current Turbine: Design and Small Scale Experiments," Energies, MDPI, vol. 13(21), pages 1-20, November.
    6. Li, Wei & Zhou, Hongbin & Liu, Hongwei & Lin, Yonggang & Xu, Quankun, 2016. "Review on the blade design technologies of tidal current turbine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 414-422.
    7. Liu, Hong-wei & Ma, Shun & Li, Wei & Gu, Hai-gang & Lin, Yong-gang & Sun, Xiao-jing, 2011. "A review on the development of tidal current energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1141-1146, February.
    8. Chen, Falin, 2010. "Kuroshio power plant development plan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2655-2668, December.
    9. Milne, I.A. & Day, A.H. & Sharma, R.N. & Flay, R.G.J., 2015. "Blade loading on tidal turbines for uniform unsteady flow," Renewable Energy, Elsevier, vol. 77(C), pages 338-350.
    10. Zhang, Jisheng & Zhou, Yudi & Lin, Xiangfeng & Wang, Guohui & Guo, Yakun & Chen, Hao, 2022. "Experimental investigation on wake and thrust characteristics of a twin-rotor horizontal axis tidal stream turbine," Renewable Energy, Elsevier, vol. 195(C), pages 701-715.
    11. Tian, Wenlong & VanZwieten, James H. & Pyakurel, Parakram & Li, Yanjun, 2016. "Influences of yaw angle and turbulence intensity on the performance of a 20 kW in-stream hydrokinetic turbine," Energy, Elsevier, vol. 111(C), pages 104-116.
    12. Lin, Jie & Lin, Binliang & Sun, Jian & Chen, Yaling, 2017. "Numerical model simulation of island-headland induced eddies in a site for tidal current energy extraction," Renewable Energy, Elsevier, vol. 101(C), pages 204-213.
    13. Goundar, Jai N. & Ahmed, M. Rafiuddin & Lee, Young-Ho, 2012. "Numerical and experimental studies on hydrofoils for marine current turbines," Renewable Energy, Elsevier, vol. 42(C), pages 173-179.
    14. Ilias Gavriilidis & Yuner Huang, 2021. "Finite Element Analysis of Tidal Turbine Blade Subjected to Impact Loads from Sea Animals," Energies, MDPI, vol. 14(21), pages 1-20, November.
    15. Stephen Nash & Agnieszka I. Olbert & Michael Hartnett, 2015. "Towards a Low-Cost Modelling System for Optimising the Layout of Tidal Turbine Arrays," Energies, MDPI, vol. 8(12), pages 1-19, November.
    16. Mourad Nachtane & Mostapha Tarfaoui & Karim Hilmi & Dennoun Saifaoui & Ahmed El Moumen, 2018. "Assessment of Energy Production Potential from Tidal Stream Currents in Morocco," Energies, MDPI, vol. 11(5), pages 1-17, April.
    17. Mujahid Badshah & Saeed Badshah & James VanZwieten & Sakhi Jan & Muhammad Amir & Suheel Abdullah Malik, 2019. "Coupled Fluid-Structure Interaction Modelling of Loads Variation and Fatigue Life of a Full-Scale Tidal Turbine under the Effect of Velocity Profile," Energies, MDPI, vol. 12(11), pages 1-22, June.
    18. Wang, Shu-qi & Cui, Jie & Ye, Ren-chuan & Chen, Zhong-fei & Zhang, Liang, 2019. "Study of the hydrodynamic performance prediction method for a horizontal-axis tidal current turbine with coupled rotation and surging motion," Renewable Energy, Elsevier, vol. 135(C), pages 313-325.
    19. Allmark, Matthew & Ellis, Robert & Lloyd, Catherine & Ordonez-Sanchez, Stephanie & Johannesen, Kate & Byrne, Carl & Johnstone, Cameron & O’Doherty, Tim & Mason-Jones, Allan, 2020. "The development, design and characterisation of a scale model Horizontal Axis Tidal Turbine for dynamic load quantification," Renewable Energy, Elsevier, vol. 156(C), pages 913-930.
    20. Ahmadian, Reza & Falconer, Roger A., 2012. "Assessment of array shape of tidal stream turbines on hydro-environmental impacts and power output," Renewable Energy, Elsevier, vol. 44(C), pages 318-327.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:112:y:2017:i:c:p:35-43. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.