IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v109y2017icp101-109.html
   My bibliography  Save this article

Development of near-infrared spectroscopy models for quantitative determination of cellulose and hemicellulose contents of big bluestem

Author

Listed:
  • Zhang, Ke
  • Xu, Youjie
  • Johnson, Loretta
  • Yuan, Wenqiao
  • Pei, Zhijian
  • Wang, Donghai

Abstract

Big bluestem is a dominant warm-season perennial native grass that has underutilized potential as a bioenergy crop. The objective of this study was to leverage a high-throughput, cost-effective phenotype of cellulose and hemicellulose contents in big bluestem biomass using near-infrared (NIR) spectroscopy to facilitate plant breeding and genetics studies. In order to develop NIR prediction models, a set of 56 big bluestem samples with seven genotypes from four planting locations in 2010 and 2011 were analyzed according to traditional wet chemical methods. Advanced multivariate analysis techniques and NIR spectroscopy improved the prediction models based on value of the coefficient of determination (R2). Partial least squares proved to be a better quantitative method than principal component regression based on larger R2, ratio of standard error of prediction set to sample standard deviation (RPD), and root mean square error of prediction (RMSEP) when developing NIR prediction models. The spectral range from 4000 to 7500 cm−1 with the first derivative treatment yielded a better prediction model than full range, with R2 of 0.92, RMSEP of 0.67%, and RPD of 4.52 in the validation sample set for cellulose and R2 of 0.91, RMSEP of 0.72%, and RPD of 3.12 for hemicellulose. These models provide good insight into the relationship between chemical bonds and structure sugars of big bluestem, allowing a rapid and accurate determination of cellulose and hemicellulose contents at low cost.

Suggested Citation

  • Zhang, Ke & Xu, Youjie & Johnson, Loretta & Yuan, Wenqiao & Pei, Zhijian & Wang, Donghai, 2017. "Development of near-infrared spectroscopy models for quantitative determination of cellulose and hemicellulose contents of big bluestem," Renewable Energy, Elsevier, vol. 109(C), pages 101-109.
  • Handle: RePEc:eee:renene:v:109:y:2017:i:c:p:101-109
    DOI: 10.1016/j.renene.2017.03.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014811730201X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.03.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Feng & Yu, Jianming & Tesso, Tesfaye & Dowell, Floyd & Wang, Donghai, 2013. "Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: A mini-review," Applied Energy, Elsevier, vol. 104(C), pages 801-809.
    2. Zhang, Ke & Johnson, Loretta & Vara Prasad, P.V. & Pei, Zhijian & Wang, Donghai, 2015. "Big bluestem as a bioenergy crop: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 740-756.
    3. Kim, Tae Hoon & Kim, Tae Hyun, 2014. "Overview of technical barriers and implementation of cellulosic ethanol in the U.S," Energy, Elsevier, vol. 66(C), pages 13-19.
    4. Zhang, Ke & Johnson, Loretta & Nelson, Richard & Yuan, Wenqiao & Pei, Zhijian & Sun, Xiuzhi S. & Wang, Donghai, 2014. "Thermal properties of big bluestem as affected by ecotype and planting location along the precipitation gradient of the Great Plains," Energy, Elsevier, vol. 64(C), pages 164-171.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Ke & Zhou, Ling & Brady, Michael & Xu, Feng & Yu, Jianming & Wang, Donghai, 2017. "Fast analysis of high heating value and elemental compositions of sorghum biomass using near-infrared spectroscopy," Energy, Elsevier, vol. 118(C), pages 1353-1360.
    2. Xu, Youjie & Zhang, Ke & Wang, Donghai, 2017. "High gravity enzymatic hydrolysis of hydrothermal and ultrasonic pretreated big bluestem with recycling prehydrolysate water," Renewable Energy, Elsevier, vol. 114(PB), pages 351-356.
    3. Ebrahimi, Majid & Caparanga, Alvin R. & Ordono, Emma E. & Villaflores, Oliver B., 2017. "Evaluation of organosolv pretreatment on the enzymatic digestibility of coconut coir fibers and bioethanol production via simultaneous saccharification and fermentation," Renewable Energy, Elsevier, vol. 109(C), pages 41-48.
    4. Zhao, Weijie & Li, Yingwen & Song, Changhua & Liu, Sijie & Li, Xuehui & Long, Jinxing, 2017. "Intensified levulinic acid/ester production from cassava by one-pot cascade prehydrolysis and delignification," Applied Energy, Elsevier, vol. 204(C), pages 1094-1100.
    5. Pitak, Lakkana & Sirisomboon, Panmanas & Saengprachatanarug, Khwantri & Wongpichet, Seree & Posom, Jetsada, 2021. "Rapid elemental composition measurement of commercial pellets using line-scan hyperspectral imaging analysis," Energy, Elsevier, vol. 220(C).
    6. Fan, Yuyang & Tippayawong, Nakorn & Wei, Guoqiang & Huang, Zhen & Zhao, Kun & Jiang, Liqun & Zheng, Anqing & Zhao, Zengli & Li, Haibin, 2020. "Minimizing tar formation whilst enhancing syngas production by integrating biomass torrefaction pretreatment with chemical looping gasification," Applied Energy, Elsevier, vol. 260(C).
    7. Junying Chen & Lijun Wang & Bo Zhang & Rui Li & Abolghasem Shahbazi, 2018. "Hydrothermal Liquefaction Enhanced by Various Chemicals as a Means of Sustainable Dairy Manure Treatment," Sustainability, MDPI, vol. 10(1), pages 1-14, January.
    8. Battista, Federico & Mancini, Giuseppe & Ruggeri, Bernardo & Fino, Debora, 2016. "Selection of the best pretreatment for hydrogen and bioethanol production from olive oil waste products," Renewable Energy, Elsevier, vol. 88(C), pages 401-407.
    9. Song, Yintao & Chen, Zhuo & Li, Yanling & Sun, Tanglei & Huhetaoli, & Lei, Tingzhou & Liu, Peng, 2024. "Regulation of energy properties and thermal behavior of bio-coal from lignocellulosic biomass using torrefaction," Energy, Elsevier, vol. 289(C).
    10. Rooni, Vahur & Raud, Merlin & Kikas, Timo, 2017. "The freezing pre-treatment of lignocellulosic material: A cheap alternative for Nordic countries," Energy, Elsevier, vol. 139(C), pages 1-7.
    11. Tom Haeldermans & Jeamichel Puente Torres & Willem Vercruysse & Robert Carleer & Pieter Samyn & Dries Vandamme & Jan Yperman & Ann Cuypers & Kenny Vanreppelen & Sonja Schreurs, 2023. "An Experimentally Validated Selection Protocol for Biochar as a Sustainable Component in Green Roofs," Waste, MDPI, vol. 1(1), pages 1-19, January.
    12. Pizzi, A. & Toscano, G. & Foppa Pedretti, E. & Duca, D. & Rossini, G. & Mengarelli, C. & Ilari, A. & Renzi, A. & Mancini, M., 2018. "Energy characteristics assessment of olive pomace by means of FT-NIR spectroscopy," Energy, Elsevier, vol. 147(C), pages 51-58.
    13. Dutta, Sajal Kanti & Halder, Gopinath & Mandal, Mrinal Kanti, 2014. "Modeling and optimization of bi-directional delignification of rice straw for production of bio-fuel feedstock using central composite design approach," Energy, Elsevier, vol. 71(C), pages 579-587.
    14. Chen, Dongyu & Gao, Dongxiao & Capareda, Sergio C. & E, Shuang & Jia, Fengrui & Wang, Ying, 2020. "Influences of hydrochloric acid washing on the thermal decomposition behavior and thermodynamic parameters of sweet sorghum stalk," Renewable Energy, Elsevier, vol. 148(C), pages 1244-1255.
    15. Zhang, Ke & Johnson, Loretta & Prasad, P.V. Vara & Pei, Zhijian & Yuan, Wenqiao & Wang, Donghai, 2015. "Comparison of big bluestem with other native grasses: Chemical composition and biofuel yield," Energy, Elsevier, vol. 83(C), pages 358-365.
    16. Nanduri, Arvind & Kulkarni, Shreesh S. & Mills, Patrick L., 2021. "Experimental techniques to gain mechanistic insight into fast pyrolysis of lignocellulosic biomass: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    17. Gillespie, Gary D. & Everard, Colm D. & McDonnell, Kevin P., 2015. "Prediction of biomass pellet quality indices using near infrared spectroscopy," Energy, Elsevier, vol. 80(C), pages 582-588.
    18. Long, Jinxing & Shu, Riyang & Yuan, Zhengqiu & Wang, Tiejun & Xu, Ying & Zhang, Xinghua & Zhang, Qi & Ma, Longlong, 2015. "Efficient valorization of lignin depolymerization products in the present of NixMg1−xO," Applied Energy, Elsevier, vol. 157(C), pages 540-545.
    19. José Luis Fernández & Felicia Sáez & Eulogio Castro & Paloma Manzanares & Mercedes Ballesteros & María José Negro, 2019. "Determination of the Lignocellulosic Components of Olive Tree Pruning Biomass by Near Infrared Spectroscopy," Energies, MDPI, vol. 12(13), pages 1-10, June.
    20. Małgorzata Smuga-Kogut & Bartosz Walendzik & Katarzyna Lewicka-Rataj & Tomasz Kogut & Leszek Bychto & Piotr Jachimowicz & Agnieszka Cydzik-Kwiatkowska, 2024. "Application of Proton Ionic Liquid in the Process of Obtaining Bioethanol from Hemp Stalks," Energies, MDPI, vol. 17(4), pages 1-15, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:109:y:2017:i:c:p:101-109. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.