IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v108y2017icp144-155.html
   My bibliography  Save this article

The effect of distribution network on the annual energy yield and economic performance of residential PV systems under high penetration

Author

Listed:
  • Pillai, Gobind
  • Putrus, Ghanim
  • Pearsall, Nicola
  • Georgitsioti, Tatiani

Abstract

Technological advances, environmental awareness and, in several countries (including the UK), financial incentives lead to the adoption of PV (photovoltaic) systems. Economic viability, an important consideration for investment in residential PV, is dependent on the annual energy yield which is affected by distribution network based factors such as point of connection to network, network hosting capacity, load profiles etc. in addition to the climate of the location. A computational algorithm easy on resources is developed in this work to evaluate the effects of distribution network on the annual energy yield of residential PV systems under scenarios of increasing PV penetration. A case study was conducted for residential PV systems in Newcastle upon Tyne with a generic UK distribution network model. Results identified penetration levels at which PV generation curtailment would occur as a consequence of network voltage rise beyond grid limits and the variation in the percentage of annual energy yield curtailed among the systems connected to the network. The volatility of economic performance of the systems depending on its location within the network is also analysed. The study also looked at the impact of the resolution of PV generation profiles on energy yield estimates and consequently economic performance.

Suggested Citation

  • Pillai, Gobind & Putrus, Ghanim & Pearsall, Nicola & Georgitsioti, Tatiani, 2017. "The effect of distribution network on the annual energy yield and economic performance of residential PV systems under high penetration," Renewable Energy, Elsevier, vol. 108(C), pages 144-155.
  • Handle: RePEc:eee:renene:v:108:y:2017:i:c:p:144-155
    DOI: 10.1016/j.renene.2017.02.047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117301349
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.02.047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Collins, L. & Ward, J.K., 2015. "Real and reactive power control of distributed PV inverters for overvoltage prevention and increased renewable generation hosting capacity," Renewable Energy, Elsevier, vol. 81(C), pages 464-471.
    2. Pillai, Gobind G. & Putrus, Ghanim A. & Georgitsioti, Tatiani & Pearsall, Nicola M., 2014. "Near-term economic benefits from grid-connected residential PV (photovoltaic) systems," Energy, Elsevier, vol. 68(C), pages 832-843.
    3. Anda, Martin & Temmen, Justin, 2014. "Smart metering for residential energy efficiency: The use of community based social marketing for behavioural change and smart grid introduction," Renewable Energy, Elsevier, vol. 67(C), pages 119-127.
    4. Pereira, Edinaldo José da Silva & Pinho, João Tavares & Galhardo, Marcos André Barros & Macêdo, Wilson Negrão, 2014. "Methodology of risk analysis by Monte Carlo Method applied to power generation with renewable energy," Renewable Energy, Elsevier, vol. 69(C), pages 347-355.
    5. Cagnano, A. & De Tuglie, E., 2015. "Centralized voltage control for distribution networks with embedded PV systems," Renewable Energy, Elsevier, vol. 76(C), pages 173-185.
    6. Mc Garrigle, E.V. & Deane, J.P. & Leahy, P.G., 2013. "How much wind energy will be curtailed on the 2020 Irish power system?," Renewable Energy, Elsevier, vol. 55(C), pages 544-553.
    7. Al-Sabounchi, Ammar M. & Yalyali, Saeed A. & Al-Thani, Hamda A., 2013. "Design and performance evaluation of a photovoltaic grid-connected system in hot weather conditions," Renewable Energy, Elsevier, vol. 53(C), pages 71-78.
    8. Hoevenaars, Eric J. & Crawford, Curran A., 2012. "Implications of temporal resolution for modeling renewables-based power systems," Renewable Energy, Elsevier, vol. 41(C), pages 285-293.
    9. Saber, Esmail M. & Lee, Siew Eang & Manthapuri, Sumanth & Yi, Wang & Deb, Chirag, 2014. "PV (photovoltaics) performance evaluation and simulation-based energy yield prediction for tropical buildings," Energy, Elsevier, vol. 71(C), pages 588-595.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammad K. Najjar & Eduardo Linhares Qualharini & Ahmed W. A. Hammad & Dieter Boer & Assed Haddad, 2019. "Framework for a Systematic Parametric Analysis to Maximize Energy Output of PV Modules Using an Experimental Design," Sustainability, MDPI, vol. 11(10), pages 1-24, May.
    2. Huang, Bin & Xing, Ke & Pullen, Stephen & Liao, Lida & Huang, Kan, 2020. "Ecological–economic assessment of renewable energy deployment in sustainable built environment," Renewable Energy, Elsevier, vol. 161(C), pages 1328-1340.
    3. Sahouane, Nordine & Dabou, Rachid & Ziane, Abderrezzaq & Neçaibia, Ammar & Bouraiou, Ahmed & Rouabhia, Abdelkrim & Mohammed, Blal, 2019. "Energy and economic efficiency performance assessment of a 28 kWp photovoltaic grid-connected system under desertic weather conditions in Algerian Sahara," Renewable Energy, Elsevier, vol. 143(C), pages 1318-1330.
    4. Li, Yanxue & Gao, Weijun & Ruan, Yingjun, 2018. "Performance investigation of grid-connected residential PV-battery system focusing on enhancing self-consumption and peak shaving in Kyushu, Japan," Renewable Energy, Elsevier, vol. 127(C), pages 514-523.
    5. Paladin, Andrea & Das, Ridoy & Wang, Yue & Ali, Zunaib & Kotter, Richard & Putrus, Ghanim & Turri, Roberto, 2021. "Micro market based optimisation framework for decentralised management of distributed flexibility assets," Renewable Energy, Elsevier, vol. 163(C), pages 1595-1611.
    6. Lin He & Chang-Ling Li & Qing-Yun Nie & Yan Men & Hai Shao & Jiang Zhu, 2017. "Core Abilities Evaluation Index System Exploration and Empirical Study on Distributed PV-Generation Projects," Energies, MDPI, vol. 10(12), pages 1-18, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sommerfeldt, Nelson & Madani, Hatef, 2017. "Revisiting the techno-economic analysis process for building-mounted, grid-connected solar photovoltaic systems: Part one – Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1379-1393.
    2. Ranaweera, Iromi & Midtgård, Ole-Morten & Korpås, Magnus, 2017. "Distributed control scheme for residential battery energy storage units coupled with PV systems," Renewable Energy, Elsevier, vol. 113(C), pages 1099-1110.
    3. Stringer, Naomi & Haghdadi, Navid & Bruce, Anna & MacGill, Iain, 2021. "Fair consumer outcomes in the balance: Data driven analysis of distributed PV curtailment," Renewable Energy, Elsevier, vol. 173(C), pages 972-986.
    4. Rehman, Shafiqur & Ahmed, M.A. & Mohamed, Mohand H. & Al-Sulaiman, Fahad A., 2017. "Feasibility study of the grid connected 10MW installed capacity PV power plants in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 319-329.
    5. Megan Culler & Hannah Burroughs, 2021. "Cybersecurity Considerations for Grid-Connected Batteries with Hardware Demonstrations," Energies, MDPI, vol. 14(11), pages 1-20, May.
    6. Razavi, Seyed-Ehsan & Rahimi, Ehsan & Javadi, Mohammad Sadegh & Nezhad, Ali Esmaeel & Lotfi, Mohamed & Shafie-khah, Miadreza & Catalão, João P.S., 2019. "Impact of distributed generation on protection and voltage regulation of distribution systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 157-167.
    7. Tubagus Aryandi Gunawan & Alessandro Singlitico & Paul Blount & James Burchill & James G. Carton & Rory F. D. Monaghan, 2020. "At What Cost Can Renewable Hydrogen Offset Fossil Fuel Use in Ireland’s Gas Network?," Energies, MDPI, vol. 13(7), pages 1-23, April.
    8. Bertolini, Marina & D'Alpaos, Chiara & Moretto, Michele, 2018. "Do Smart Grids boost investments in domestic PV plants? Evidence from the Italian electricity market," Energy, Elsevier, vol. 149(C), pages 890-902.
    9. Cho, Younghoon, 2017. "Dual-buck residential photovoltaic inverter with a high-accuracy repetitive current controller," Renewable Energy, Elsevier, vol. 101(C), pages 168-181.
    10. Rao, A. Gangoli & van den Oudenalder, F.S.C. & Klein, S.A., 2019. "Natural gas displacement by wind curtailment utilization in combined-cycle power plants," Energy, Elsevier, vol. 168(C), pages 477-491.
    11. Deveci, Muhammet & Cali, Umit & Kucuksari, Sadik & Erdogan, Nuh, 2020. "Interval type-2 fuzzy sets based multi-criteria decision-making model for offshore wind farm development in Ireland," Energy, Elsevier, vol. 198(C).
    12. Laura Canale & Anna Rita Di Fazio & Mario Russo & Andrea Frattolillo & Marco Dell’Isola, 2021. "An Overview on Functional Integration of Hybrid Renewable Energy Systems in Multi-Energy Buildings," Energies, MDPI, vol. 14(4), pages 1-33, February.
    13. Ponce, Pedro & Polasko, Kenneth & Molina, Arturo, 2016. "End user perceptions toward smart grid technology: Acceptance, adoption, risks, and trust," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 587-598.
    14. Bhowmik, Chiranjib & Bhowmik, Sumit & Ray, Amitava & Pandey, Krishna Murari, 2017. "Optimal green energy planning for sustainable development: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 796-813.
    15. Balibrea-Iniesta, José & Rodríguez-Monroy, Carlos & Núñez-Guerrero, Yilsy María, 2021. "Economic analysis of the German regulation for electrical generation projects from biogas applying the theory of real options," Energy, Elsevier, vol. 231(C).
    16. Mahmud, Nasif & Zahedi, A., 2016. "Review of control strategies for voltage regulation of the smart distribution network with high penetration of renewable distributed generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 582-595.
    17. Sourav Khanna & Victor Becerra & Adib Allahham & Damian Giaouris & Jamie M. Foster & Keiron Roberts & David Hutchinson & Jim Fawcett, 2020. "Demand Response Model Development for Smart Households Using Time of Use Tariffs and Optimal Control—The Isle of Wight Energy Autonomous Community Case Study," Energies, MDPI, vol. 13(3), pages 1-27, January.
    18. Matej Tazky & Michal Regula & Alena Otcenasova, 2021. "Impact of Changes in a Distribution Network Nature on the Capacitive Reactive Power Flow into the Transmission Network in Slovakia," Energies, MDPI, vol. 14(17), pages 1-16, August.
    19. Kosorić, Vesna & Huang, Huajing & Tablada, Abel & Lau, Siu-Kit & Tan, Hugh T.W., 2019. "Survey on the social acceptance of the productive façade concept integrating photovoltaic and farming systems in high-rise public housing blocks in Singapore," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 197-214.
    20. Ren, Haoshan & Ma, Zhenjun & Chan, Antoni B. & Sun, Yongjun, 2023. "Optimal planning of municipal-scale distributed rooftop photovoltaic systems with maximized solar energy generation under constraints in high-density cities," Energy, Elsevier, vol. 263(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:108:y:2017:i:c:p:144-155. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.