IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v205y2023icp447-460.html
   My bibliography  Save this article

Characterizing the Marine Energy Test Area (META) in Wales, UK

Author

Listed:
  • Neill, Simon P.
  • Fairley, Iain A.
  • Rowlands, Steven
  • Young, Saul
  • Hill, Tom
  • Unsworth, Christopher A.
  • King, Nicholas
  • Roberts, Michael J.
  • Austin, Martin J.
  • Hughes, Peter
  • Masters, Ian
  • Owen, Aled
  • Powell, Ben
  • Reeve, Dominic E.
  • Lewis, Matthew J.

Abstract

With lack of convergence on any single wave or tidal technology, test centres have a unique role in the marine renewable energy industry. Test centres facilitate real testing at sea for devices and components at various TRLs (Technology Readiness Level), reducing the time, cost, and risks faced by marine energy developers. META (Marine Energy Test Area) is a £2.7M project managed by Marine Energy Wales (MEW), consisting of eight test areas in the Milford Haven Waterway and surrounding waters (Pembrokeshire, Wales). Although various datasets have been collected from the META test areas over the last decade, and some aspects of these data have been published in various reports, the data has not been gathered together, systematically analysed and critically assessed – the aim of this study. Here, we describe and interpret the various META datasets, including multibeam, ADCP (acoustic Doppler current profiler), and wave buoy data. We report the key parameters of relevance to testing at META, including bathymetry, the nature and magnitude of the tidal currents, turbulence, and wave climates. We make recommendations on future priorities for data collection at META, and discuss the future of the test areas, including expansion into floating wind and other evolving marine energy technologies.

Suggested Citation

  • Neill, Simon P. & Fairley, Iain A. & Rowlands, Steven & Young, Saul & Hill, Tom & Unsworth, Christopher A. & King, Nicholas & Roberts, Michael J. & Austin, Martin J. & Hughes, Peter & Masters, Ian & O, 2023. "Characterizing the Marine Energy Test Area (META) in Wales, UK," Renewable Energy, Elsevier, vol. 205(C), pages 447-460.
  • Handle: RePEc:eee:renene:v:205:y:2023:i:c:p:447-460
    DOI: 10.1016/j.renene.2023.01.105
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812300126X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.01.105?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lewis, Matt & O’Hara Murray, Rory & Fredriksson, Sam & Maskell, John & de Fockert, Anton & Neill, Simon P & Robins, Peter E, 2021. "A standardised tidal-stream power curve, optimised for the global resource," Renewable Energy, Elsevier, vol. 170(C), pages 1308-1323.
    2. Lucas, Natasha S. & Austin, Martin J. & Rippeth, Tom P. & Powell, Ben & Wakonigg, Pablo, 2022. "Turbulence and coherent structure characterisation in a tidally energetic channel," Renewable Energy, Elsevier, vol. 194(C), pages 259-272.
    3. Neill, Simon P. & Hashemi, M. Reza & Lewis, Matt J., 2014. "The role of tidal asymmetry in characterizing the tidal energy resource of Orkney," Renewable Energy, Elsevier, vol. 68(C), pages 337-350.
    4. Lewis, M. & Neill, S.P. & Robins, P. & Hashemi, M.R. & Ward, S., 2017. "Characteristics of the velocity profile at tidal-stream energy sites," Renewable Energy, Elsevier, vol. 114(PA), pages 258-272.
    5. Roche, R.C. & Walker-Springett, K. & Robins, P.E. & Jones, J. & Veneruso, G. & Whitton, T.A. & Piano, M. & Ward, S.L. & Duce, C.E. & Waggitt, J.J. & Walker-Springett, G.R. & Neill, S.P. & Lewis, M.J. , 2016. "Research priorities for assessing potential impacts of emerging marine renewable energy technologies: Insights from developments in Wales (UK)," Renewable Energy, Elsevier, vol. 99(C), pages 1327-1341.
    6. Sentchev, Alexei & Thiébaut, Maxime & Schmitt, François G., 2020. "Impact of turbulence on power production by a free-stream tidal turbine in real sea conditions," Renewable Energy, Elsevier, vol. 147(P1), pages 1932-1940.
    7. Neill, Simon P. & Vögler, Arne & Goward-Brown, Alice J. & Baston, Susana & Lewis, Matthew J. & Gillibrand, Philip A. & Waldman, Simon & Woolf, David K., 2017. "The wave and tidal resource of Scotland," Renewable Energy, Elsevier, vol. 114(PA), pages 3-17.
    8. Fairley, Iain & Williamson, Benjamin J. & McIlvenny, Jason & King, Nicholas & Masters, Ian & Lewis, Matthew & Neill, Simon & Glasby, David & Coles, Daniel & Powell, Ben & Naylor, Keith & Robinson, Max, 2022. "Drone-based large-scale particle image velocimetry applied to tidal stream energy resource assessment," Renewable Energy, Elsevier, vol. 196(C), pages 839-855.
    9. Neill, Simon P. & Lewis, Matt J. & Hashemi, M. Reza & Slater, Emma & Lawrence, John & Spall, Steven A., 2014. "Inter-annual and inter-seasonal variability of the Orkney wave power resource," Applied Energy, Elsevier, vol. 132(C), pages 339-348.
    10. Thiébaut, Maxime & Sentchev, Alexei, 2017. "Asymmetry of tidal currents off the W.Brittany coast and assessment of tidal energy resource around the Ushant Island," Renewable Energy, Elsevier, vol. 105(C), pages 735-747.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ward, Sophie L. & Robins, Peter E. & Lewis, Matt J. & Iglesias, Gregorio & Hashemi, M. Reza & Neill, Simon P., 2018. "Tidal stream resource characterisation in progressive versus standing wave systems," Applied Energy, Elsevier, vol. 220(C), pages 274-285.
    2. Van Thinh Nguyen & Alina Santa Cruz & Sylvain S. Guillou & Mohamad N. Shiekh Elsouk & Jérôme Thiébot, 2019. "Effects of the Current Direction on the Energy Production of a Tidal Farm: The Case of Raz Blanchard (France)," Energies, MDPI, vol. 12(13), pages 1-20, June.
    3. Cossu, Remo & Penesis, Irene & Nader, Jean-Roch & Marsh, Philip & Perez, Larissa & Couzi, Camille & Grinham, Alistair & Osman, Peter, 2021. "Tidal energy site characterisation in a large tidal channel in Banks Strait, Tasmania, Australia," Renewable Energy, Elsevier, vol. 177(C), pages 859-870.
    4. Lilian Lieber & Shaun Fraser & Daniel Coles & W. Alex M. Nimmo-Smith, 2024. "Sheared turbulent flows and wake dynamics of an idled floating tidal turbine," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    5. Yang, Zhaoqing & García Medina, Gabriel & Neary, Vincent S. & Ahn, Seongho & Kilcher, Levi & Bharath, Aidan, 2023. "Multi-decade high-resolution regional hindcasts for wave energy resource characterization in U.S. coastal waters," Renewable Energy, Elsevier, vol. 212(C), pages 803-817.
    6. Zarzuelo, Carmen & López-Ruiz, Alejandro & Ortega-Sánchez, Miguel, 2018. "Impact of human interventions on tidal stream power: The case of Cádiz Bay," Energy, Elsevier, vol. 145(C), pages 88-104.
    7. Lewis, Matt & McNaughton, James & Márquez-Dominguez, Concha & Todeschini, Grazia & Togneri, Michael & Masters, Ian & Allmark, Matthew & Stallard, Tim & Neill, Simon & Goward-Brown, Alice & Robins, Pet, 2019. "Power variability of tidal-stream energy and implications for electricity supply," Energy, Elsevier, vol. 183(C), pages 1061-1074.
    8. Barbarelli, Silvio & Florio, Gaetano & Lo Zupone, Giacomo & Scornaienchi, Nino Michele, 2018. "First techno-economic evaluation of array configuration of self-balancing tidal kinetic turbines," Renewable Energy, Elsevier, vol. 129(PA), pages 183-200.
    9. Thiébaut, Maxime & Filipot, Jean-François & Maisondieu, Christophe & Damblans, Guillaume & Duarte, Rui & Droniou, Eloi & Chaplain, Nicolas & Guillou, Sylvain, 2020. "A comprehensive assessment of turbulence at a tidal-stream energy site influenced by wind-generated ocean waves," Energy, Elsevier, vol. 191(C).
    10. Artal, Osvaldo & Pizarro, Oscar & Sepúlveda, Héctor H., 2019. "The impact of spring-neap tidal-stream cycles in tidal energy assessments in the Chilean Inland Sea," Renewable Energy, Elsevier, vol. 139(C), pages 496-506.
    11. Vinod, Ashwin & Banerjee, Arindam, 2019. "Performance and near-wake characterization of a tidal current turbine in elevated levels of free stream turbulence," Applied Energy, Elsevier, vol. 254(C).
    12. Fairley, Iain & Lewis, Matthew & Robertson, Bryson & Hemer, Mark & Masters, Ian & Horrillo-Caraballo, Jose & Karunarathna, Harshinie & Reeve, Dominic E., 2020. "A classification system for global wave energy resources based on multivariate clustering," Applied Energy, Elsevier, vol. 262(C).
    13. Burić, Melita & Grgurić, Sanja & Mikulčić, Hrvoje & Wang, Xuebin, 2021. "A numerical investigation of tidal current energy resource potential in a sea strait," Energy, Elsevier, vol. 234(C).
    14. Magnier, Maëlys & Delette, Nina & Druault, Philippe & Gaurier, Benoît & Germain, Grégory, 2022. "Experimental study of the shear flow effect on tidal turbine blade loading variation," Renewable Energy, Elsevier, vol. 193(C), pages 744-757.
    15. Calvino, Clément & Furgerot, Lucille & Poizot, Emmanuel & du Bois, Pascal Bailly & Bennis, Anne-Claire, 2023. "Model and method to predict the turbulent kinetic energy induced by tidal currents, application to the wave-induced turbulence," Renewable Energy, Elsevier, vol. 216(C).
    16. Sentchev, Alexei & Thiébaut, Maxime & Schmitt, François G., 2020. "Impact of turbulence on power production by a free-stream tidal turbine in real sea conditions," Renewable Energy, Elsevier, vol. 147(P1), pages 1932-1940.
    17. Driscoll, Honora & Salmon, Nicholas & Bañares-Alcántara, Rene, 2024. "Exploiting the temporal characteristics of tidal stream power for green ammonia production," Renewable Energy, Elsevier, vol. 226(C).
    18. Fouz, D.M. & Carballo, R. & López, I. & Iglesias, G., 2022. "A holistic methodology for hydrokinetic energy site selection," Applied Energy, Elsevier, vol. 317(C).
    19. Thiébaut, Maxime & Sentchev, Alexei & du Bois, Pascal Bailly, 2019. "Merging velocity measurements and modeling to improve understanding of tidal stream resource in Alderney Race," Energy, Elsevier, vol. 178(C), pages 460-470.
    20. Ulazia, Alain & Penalba, Markel & Ibarra-Berastegui, Gabriel & Ringwood, John & Sáenz, Jon, 2019. "Reduction of the capture width of wave energy converters due to long-term seasonal wave energy trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:205:y:2023:i:c:p:447-460. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.