IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v28y2003i4p511-522.html
   My bibliography  Save this article

Simulation of a small wind fuel cell hybrid energy system

Author

Listed:
  • Iqbal, M.T

Abstract

This paper describes simulation results of a small 500 W wind fuel cell hybrid energy system. The system consists of a Southwest Wind Power Inc. AIR 403 wind turbine, a Proton Exchange Membrane Fuel Cell (PEMFC) and an electrolyzer. Dynamic modeling of various components of this small isolated system is presented. Simulink is used for the dynamic simulation of this nonlinear 48 V hybrid energy system. Transient responses of the system to a step change in the load current and wind speed in a number of possible situations are presented. Analysis of simulation results and limitations of a wind fuel cell hybrid energy system are discussed.

Suggested Citation

  • Iqbal, M.T, 2003. "Simulation of a small wind fuel cell hybrid energy system," Renewable Energy, Elsevier, vol. 28(4), pages 511-522.
  • Handle: RePEc:eee:renene:v:28:y:2003:i:4:p:511-522
    DOI: 10.1016/S0960-1481(02)00070-8
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148102000708
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0960-1481(02)00070-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, S.H. & Kotak, D.B. & Fleetwood, M.S., 2005. "An integrated system framework for fuel cell-based distributed green energy applications," Renewable Energy, Elsevier, vol. 30(10), pages 1525-1540.
    2. Sandoval, Cinda & Alvarado, Victor M. & Carmona, Jean-Claude & Lopez Lopez, Guadalupe & Gomez-Aguilar, J.F., 2017. "Energy management control strategy to improve the FC/SC dynamic behavior on hybrid electric vehicles: A frequency based distribution," Renewable Energy, Elsevier, vol. 105(C), pages 407-418.
    3. Kasseris, Emmanuel & Samaras, Zissis & Zafeiris, Dimitrios, 2007. "Optimization of a wind-power fuel-cell hybrid system in an autonomous electrical network environment," Renewable Energy, Elsevier, vol. 32(1), pages 57-79.
    4. Koroneos, C. & Katopodi, E., 2011. "Maximization of wind energy penetration with the use of H2 production--An exergy approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 648-656, January.
    5. Mathiesen, Brian Vad & Lund, Henrik & Karlsson, Kenneth, 2011. "100% Renewable energy systems, climate mitigation and economic growth," Applied Energy, Elsevier, vol. 88(2), pages 488-501, February.
    6. Sankar, K. & Thakre, Niraj & Singh, Sumit Mohan & Jana, Amiya K., 2017. "Sliding mode observer based nonlinear control of a PEMFC integrated with a methanol reformer," Energy, Elsevier, vol. 139(C), pages 1126-1143.
    7. Deshmukh, M.K. & Deshmukh, S.S., 2008. "Modeling of hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(1), pages 235-249, January.
    8. Nelson, D.B. & Nehrir, M.H. & Wang, C., 2006. "Unit sizing and cost analysis of stand-alone hybrid wind/PV/fuel cell power generation systems," Renewable Energy, Elsevier, vol. 31(10), pages 1641-1656.
    9. Lund, H., 2006. "Large-scale integration of optimal combinations of PV, wind and wave power into the electricity supply," Renewable Energy, Elsevier, vol. 31(4), pages 503-515.
    10. Abulanwar, Sayed & Ghanem, Abdelhady & Rizk, Mohammad E.M. & Hu, Weihao, 2021. "Adaptive synergistic control strategy for a hybrid AC/DC microgrid during normal operation and contingencies," Applied Energy, Elsevier, vol. 304(C).
    11. Apostolou, Dimitrios & Enevoldsen, Peter, 2019. "The past, present and potential of hydrogen as a multifunctional storage application for wind power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 917-929.
    12. Ntziachristos, Leonidas & Kouridis, Chariton & Samaras, Zissis & Pattas, Konstantinos, 2005. "A wind-power fuel-cell hybrid system study on the non-interconnected Aegean islands grid," Renewable Energy, Elsevier, vol. 30(10), pages 1471-1487.
    13. Katsaprakakis, Dimitris Al & Thomsen, Bjarti & Dakanali, Irini & Tzirakis, Kostas, 2019. "Faroe Islands: Towards 100% R.E.S. penetration," Renewable Energy, Elsevier, vol. 135(C), pages 473-484.
    14. Kadri, Ameni & Marzougui, Hajer & Aouiti, Abdelkrim & Bacha, Faouzi, 2020. "Energy management and control strategy for a DFIG wind turbine/fuel cell hybrid system with super capacitor storage system," Energy, Elsevier, vol. 192(C).
    15. Lund, Henrik, 2005. "Large-scale integration of wind power into different energy systems," Energy, Elsevier, vol. 30(13), pages 2402-2412.
    16. Lund, H & Münster, E, 2003. "Modelling of energy systems with a high percentage of CHP and wind power," Renewable Energy, Elsevier, vol. 28(14), pages 2179-2193.
    17. Rostirolla, G. & Grange, L. & Minh-Thuyen, T. & Stolf, P. & Pierson, J.M. & Da Costa, G. & Baudic, G. & Haddad, M. & Kassab, A. & Nicod, J.M. & Philippe, L. & Rehn-Sonigo, V. & Roche, R. & Celik, B. &, 2022. "A survey of challenges and solutions for the integration of renewable energy in datacenters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:28:y:2003:i:4:p:511-522. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.