IDEAS home Printed from https://ideas.repec.org/p/cdl/itsdav/qt23w1m5bb.html
   My bibliography  Save this paper

Fuel Cell Powered Vehicles Using Supercapacitors: Device Characteristics, Control Strategies, and Simulation Results

Author

Listed:
  • Zhao, Hengbing
  • Burke, Andy

Abstract

The fuel cell powered vehicle is one of the most attractive candidates for the future due to its high efficiency and capability to use hydrogen as the fuel. However, its relatively poor dynamic response, high cost, and limited life time have impeded its widespread adoption. With the emergence of large supercapacitors (also know as ultracapacitors, UCs) with high power density and the shift to hybridization in the vehicle technology, fuel cell/supercapacitor hybrid fuel cell vehicles are gaining more attention. Fuel cells in conjunction with supercapacitors can create high power with fast dynamic response, which makes it well suitable for automotive applications. Hybrid fuel cell vehicles with different powertrain configurations have been evaluated based on simulations performed at the Institute of Transportation Studies, University of California-Davis. The following powertrain configurations have been considered: (a) Direct hydrogen fuel cell vehicles (FCVs) without energy storage (b) FCVs with supercapacitors directly connected in parallel with fuel cells (c) FCVs with supercapacitors coupled in parallel with fuel cells through a DC/DC converter (d) FCVs with fuel cells connected to supercapacitors via a DC/DC converter Simulation results show that hybridization of fuel cell vehicles with supercapacitors with load leveling control can significantly reduce the stress on fuel cells electrically and mechanically and benefit fuel economy of the vehicles. Compared to fuel cell vehicles without energy storages, fuel cell-supercapacitor hybridization achieved fuel economy increases of up to 28% on the FUDS cycle and up to 24% on the US06 cycle for mid-size passenger vehicles. In general, the maximum fuel economy improvements are greater using supercapacitors than batteries. The simulation results show that the power assist control strategy is better than load-level control for batteries because of the lower losses in the DC/DC converter and batteries, but load level control is better for supercapacitors. The best approach for hybridization of the fuel cell vehicles is to use supercapacitors with load leveled control as it greatly mitigates the stress on fuel cells and results in a near maximum improvement in fuel economy and fuel cell durability.

Suggested Citation

  • Zhao, Hengbing & Burke, Andy, 2010. "Fuel Cell Powered Vehicles Using Supercapacitors: Device Characteristics, Control Strategies, and Simulation Results," Institute of Transportation Studies, Working Paper Series qt23w1m5bb, Institute of Transportation Studies, UC Davis.
  • Handle: RePEc:cdl:itsdav:qt23w1m5bb
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/23w1m5bb.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yong-Song Chen & Sheng-Miao Lin & Boe-Shong Hong, 2013. "Experimental Study on a Passive Fuel Cell/Battery Hybrid Power System," Energies, MDPI, vol. 6(12), pages 1-10, December.
    2. Roman Niestrój & Tomasz Rogala & Wojciech Skarka, 2020. "An Energy Consumption Model for Designing an AGV Energy Storage System with a PEMFC Stack," Energies, MDPI, vol. 13(13), pages 1-31, July.
    3. Sandoval, Cinda & Alvarado, Victor M. & Carmona, Jean-Claude & Lopez Lopez, Guadalupe & Gomez-Aguilar, J.F., 2017. "Energy management control strategy to improve the FC/SC dynamic behavior on hybrid electric vehicles: A frequency based distribution," Renewable Energy, Elsevier, vol. 105(C), pages 407-418.

    More about this item

    Keywords

    Engineering;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsdav:qt23w1m5bb. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucdus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.