IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v103y2017icp265-276.html
   My bibliography  Save this article

Resource characterization of sites in the vicinity of an island near a landmass

Author

Listed:
  • Pérez-Ortiz, Alberto
  • Borthwick, Alistair G.L.
  • McNaughton, James
  • Smith, Helen C.M.
  • Xiao, Qing

Abstract

Renewable energy technologies are undergoing rapid development, the global aim being to achieve energy security and lower carbon emissions. Of marine renewable energy sources, tidal power has inherent predictability and large theoretical potential, estimated to exceed 8000 (TW h)a−1 in coastal basins. Coastal sites in the vicinity of an island near a landmass are prime candidates for tidal stream power exploitation by arrays of turbines. This paper characterizes numerically the upper limit to power extraction of turbines installed at such sites. It is demonstrated that the maximum power extracted from the strait is generally not well approximated by either the power dissipated naturally at the seabed or the undisturbed kinetic power of flow in the strait. An analytical channel model [C. Garrett and P. Cummins, “The power potential of tidal currents in channels,” Proc. R. Soc. A Math. Phys. Eng. Sci., vol. 461, no. 2060, pp. 2563–2572, Aug. 2005] provides lower predictions than the present numerical model of available power in the strait due to the analytical model not accounting for changes to the driving head resulting from power extraction and flow diversion offshore of the island. For geometrically long islands extending parallel to the landmass, the numerically predicted extracted power is satisfactorily approximated by the power naturally dissipated at the seabed, and there is reasonable agreement with the estimate by the channel analytical model. It is found that the results are sensitive to choice of boundary conditions used for the coastlines, the eddy viscosity, and bed friction. Increased offshore depth and lower blockage both reduce the maximum power extracted from the strait. The results indicate that power extracted from the site can be maximum if extraction is implemented both in the strait and offshore of the island. Presence of the landmass and increasing island dimensions both enhance power extraction.

Suggested Citation

  • Pérez-Ortiz, Alberto & Borthwick, Alistair G.L. & McNaughton, James & Smith, Helen C.M. & Xiao, Qing, 2017. "Resource characterization of sites in the vicinity of an island near a landmass," Renewable Energy, Elsevier, vol. 103(C), pages 265-276.
  • Handle: RePEc:eee:renene:v:103:y:2017:i:c:p:265-276
    DOI: 10.1016/j.renene.2016.10.086
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116309740
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.10.086?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tsoskounoglou, Miltos & Ayerides, George & Tritopoulou, Efi, 2008. "The end of cheap oil: Current status and prospects," Energy Policy, Elsevier, vol. 36(10), pages 3797-3806, October.
    2. Shafiee, Shahriar & Topal, Erkan, 2009. "When will fossil fuel reserves be diminished?," Energy Policy, Elsevier, vol. 37(1), pages 181-189, January.
    3. Vennell, Ross & Funke, Simon W. & Draper, Scott & Stevens, Craig & Divett, Tim, 2015. "Designing large arrays of tidal turbines: A synthesis and review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 454-472.
    4. Vennell, Ross, 2011. "Estimating the power potential of tidal currents and the impact of power extraction on flow speeds," Renewable Energy, Elsevier, vol. 36(12), pages 3558-3565.
    5. Draper, Scott & Adcock, Thomas A.A. & Borthwick, Alistair G.L. & Houlsby, Guy T., 2014. "Estimate of the tidal stream power resource of the Pentland Firth," Renewable Energy, Elsevier, vol. 63(C), pages 650-657.
    6. Martin-Short, R. & Hill, J. & Kramer, S.C. & Avdis, A. & Allison, P.A. & Piggott, M.D., 2015. "Tidal resource extraction in the Pentland Firth, UK: Potential impacts on flow regime and sediment transport in the Inner Sound of Stroma," Renewable Energy, Elsevier, vol. 76(C), pages 596-607.
    7. Bryden, Ian G. & Couch, Scott J., 2007. "How much energy can be extracted from moving water with a free surface: A question of importance in the field of tidal current energy?," Renewable Energy, Elsevier, vol. 32(11), pages 1961-1966.
    8. Cummins, Patrick F., 2013. "The extractable power from a split tidal channel: An equivalent circuit analysis," Renewable Energy, Elsevier, vol. 50(C), pages 395-401.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fairley, Iain & Williamson, Benjamin J. & McIlvenny, Jason & King, Nicholas & Masters, Ian & Lewis, Matthew & Neill, Simon & Glasby, David & Coles, Daniel & Powell, Ben & Naylor, Keith & Robinson, Max, 2022. "Drone-based large-scale particle image velocimetry applied to tidal stream energy resource assessment," Renewable Energy, Elsevier, vol. 196(C), pages 839-855.
    2. Goss, Z.L. & Coles, D.S. & Kramer, S.C. & Piggott, M.D., 2021. "Efficient economic optimisation of large-scale tidal stream arrays," Applied Energy, Elsevier, vol. 295(C).
    3. Lilia Flores Mateos & Michael Hartnett, 2019. "Incorporation of a Non-Constant Thrust Force Coefficient to Assess Tidal-Stream Energy," Energies, MDPI, vol. 12(21), pages 1-17, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deng, Guizhong & Zhang, Zhaoru & Li, Ye & Liu, Hailong & Xu, Wentao & Pan, Yulin, 2020. "Prospective of development of large-scale tidal current turbine array: An example numerical investigation of Zhejiang, China," Applied Energy, Elsevier, vol. 264(C).
    2. Pérez-Ortiz, Alberto & Borthwick, Alistair G.L. & McNaughton, James & Avdis, Alexandros, 2017. "Characterization of the tidal resource in Rathlin Sound," Renewable Energy, Elsevier, vol. 114(PA), pages 229-243.
    3. Khan, N. & Kalair, A. & Abas, N. & Haider, A., 2017. "Review of ocean tidal, wave and thermal energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 590-604.
    4. Funke, S.W. & Kramer, S.C. & Piggott, M.D., 2016. "Design optimisation and resource assessment for tidal-stream renewable energy farms using a new continuous turbine approach," Renewable Energy, Elsevier, vol. 99(C), pages 1046-1061.
    5. Smeaton, Malcolm & Vennell, Ross & Harang, Alice, 2016. "The effect of channel constriction on the potential for tidal stream power," Renewable Energy, Elsevier, vol. 99(C), pages 45-56.
    6. Philip A. Gillibrand & Roy A. Walters & Jason McIlvenny, 2016. "Numerical Simulations of the Effects of a Tidal Turbine Array on Near-Bed Velocity and Local Bed Shear Stress," Energies, MDPI, vol. 9(10), pages 1-22, October.
    7. Lilia Flores Mateos & Michael Hartnett, 2020. "Hydrodynamic Effects of Tidal-Stream Power Extraction for Varying Turbine Operating Conditions," Energies, MDPI, vol. 13(12), pages 1-23, June.
    8. Fairley, I. & Masters, I. & Karunarathna, H., 2015. "The cumulative impact of tidal stream turbine arrays on sediment transport in the Pentland Firth," Renewable Energy, Elsevier, vol. 80(C), pages 755-769.
    9. María José Suárez-López & Rodolfo Espina-Valdés & Víctor Manuel Fernández Pacheco & Antonio Navarro Manso & Eduardo Blanco-Marigorta & Eduardo Álvarez-Álvarez, 2019. "A Review of Software Tools to Study the Energetic Potential of Tidal Currents," Energies, MDPI, vol. 12(9), pages 1-19, May.
    10. Lin, Jie & Lin, Binliang & Sun, Jian & Chen, Yaling, 2017. "Numerical model simulation of island-headland induced eddies in a site for tidal current energy extraction," Renewable Energy, Elsevier, vol. 101(C), pages 204-213.
    11. González-Gorbeña, Eduardo & Qassim, Raad Y. & Rosman, Paulo C.C., 2016. "Optimisation of hydrokinetic turbine array layouts via surrogate modelling," Renewable Energy, Elsevier, vol. 93(C), pages 45-57.
    12. O’Hara Murray, Rory & Gallego, Alejandro, 2017. "A modelling study of the tidal stream resource of the Pentland Firth, Scotland," Renewable Energy, Elsevier, vol. 102(PB), pages 326-340.
    13. Verbruggen, Aviel & Al Marchohi, Mohamed, 2010. "Views on peak oil and its relation to climate change policy," Energy Policy, Elsevier, vol. 38(10), pages 5572-5581, October.
    14. Fairley, I. & Karunarathna, H. & Masters, I., 2018. "The influence of waves on morphodynamic impacts of energy extraction at a tidal stream turbine site in the Pentland Firth," Renewable Energy, Elsevier, vol. 125(C), pages 630-647.
    15. Neill, Simon P. & Vögler, Arne & Goward-Brown, Alice J. & Baston, Susana & Lewis, Matthew J. & Gillibrand, Philip A. & Waldman, Simon & Woolf, David K., 2017. "The wave and tidal resource of Scotland," Renewable Energy, Elsevier, vol. 114(PA), pages 3-17.
    16. Vennell, Ross & Major, Robert & Zyngfogel, Remy & Beamsley, Brett & Smeaton, Malcolm & Scheel, Max & Unwin, Heni, 2020. "Rapid initial assessment of the number of turbines required for large-scale power generation by tidal currents," Renewable Energy, Elsevier, vol. 162(C), pages 1890-1905.
    17. Goh, Hooi-Bein & Lai, Sai-Hin & Jameel, Mohammed & Teh, Hee-Min, 2020. "Potential of coastal headlands for tidal energy extraction and the resulting environmental effects along Negeri Sembilan coastlines: A numerical simulation study," Energy, Elsevier, vol. 192(C).
    18. Ali Mubarak Al-Qahtani, 2023. "A Comprehensive Review in Microwave Pyrolysis of Biomass, Syngas Production and Utilisation," Energies, MDPI, vol. 16(19), pages 1-16, September.
    19. Christelle Auguste & Philip Marsh & Jean-Roch Nader & Remo Cossu & Irene Penesis, 2020. "Towards a Tidal Farm in Banks Strait, Tasmania: Influence of Tidal Array on Hydrodynamics," Energies, MDPI, vol. 13(20), pages 1-22, October.
    20. Jen-Yu Lee & Tien-Thinh Nguyen & Hong-Giang Nguyen & Jen-Yao Lee, 2022. "Towards Predictive Crude Oil Purchase: A Case Study in the USA and Europe," Energies, MDPI, vol. 15(11), pages 1-15, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:103:y:2017:i:c:p:265-276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.