IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v101y2017icp550-564.html
   My bibliography  Save this article

Stochastic response of jacket supported offshore wind turbines for varying soil parameters

Author

Listed:
  • Abhinav, K.A.
  • Saha, Nilanjan

Abstract

Wind turbines on jackets are being increasingly installed offshore. This paper attempts to investigate the effect of soil-structure interaction (SSI) on a jacket-offshore wind turbine (OWT) in a water depth of 70 m using JONSWAP spectrum. Stochastic responses of the OWT under varying soil profiles and met-ocean conditions are studied, by coupling the aerodynamic and hydrodynamic forces. From stochastic time domain response analyses, the SSI is observed to have significant influence in soft clay and layered soils at and above rated wind speeds whereas the dense sand have negligible influence.

Suggested Citation

  • Abhinav, K.A. & Saha, Nilanjan, 2017. "Stochastic response of jacket supported offshore wind turbines for varying soil parameters," Renewable Energy, Elsevier, vol. 101(C), pages 550-564.
  • Handle: RePEc:eee:renene:v:101:y:2017:i:c:p:550-564
    DOI: 10.1016/j.renene.2016.09.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116308096
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.09.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shi, Wei & Park, Hyunchul & Chung, Chinwha & Baek, Jaeha & Kim, Youngchan & Kim, Changwan, 2013. "Load analysis and comparison of different jacket foundations," Renewable Energy, Elsevier, vol. 54(C), pages 201-210.
    2. Shi, Wei & Park, Hyunchul & Han, Jonghoon & Na, Sangkwon & Kim, Changwan, 2013. "A study on the effect of different modeling parameters on the dynamic response of a jacket-type offshore wind turbine in the Korean Southwest Sea," Renewable Energy, Elsevier, vol. 58(C), pages 50-59.
    3. Esteban, M. Dolores & Diez, J. Javier & López, Jose S. & Negro, Vicente, 2011. "Why offshore wind energy?," Renewable Energy, Elsevier, vol. 36(2), pages 444-450.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xue, Zhanpu & Wang, Wei & Fang, Liqing & Zhou, Jingbo, 2020. "Numerical simulation on structural dynamics of 5 MW wind turbine," Renewable Energy, Elsevier, vol. 162(C), pages 222-233.
    2. He, Kunpeng & Ye, Jianhong, 2023. "Seismic dynamics of offshore wind turbine-seabed foundation: Insights from a numerical study," Renewable Energy, Elsevier, vol. 205(C), pages 200-221.
    3. Chenggen Xu & Haitao Jiang & Mengtao Xu & Decheng Sun & Shengjie Rui, 2022. "Calculation Method for Uplift Capacity of Suction Caisson in Sand Considering Different Drainage Conditions," Sustainability, MDPI, vol. 15(1), pages 1-20, December.
    4. Renjie Mo & Haigui Kang & Miao Li & Xuanlie Zhao, 2017. "Seismic Fragility Analysis of Monopile Offshore Wind Turbines under Different Operational Conditions," Energies, MDPI, vol. 10(7), pages 1-22, July.
    5. Zhanpu Xue & Hao Zhang & Yunguang Ji, 2023. "Dynamic Response of a Flexible Multi-Body in Large Wind Turbines: A Review," Sustainability, MDPI, vol. 15(8), pages 1-25, April.
    6. Li, Jiale & Wang, Xuefei & Guo, Yuan & Yu, Xiong Bill, 2020. "The loading behavior of innovative monopile foundations for offshore wind turbine based on centrifuge experiments," Renewable Energy, Elsevier, vol. 152(C), pages 1109-1120.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Yeon-Seung & González, José A. & Lee, Ji Hyun & Kim, Young Il & Park, K.C. & Han, Soonhung, 2016. "Structural topology optimization of the transition piece for an offshore wind turbine with jacket foundation," Renewable Energy, Elsevier, vol. 85(C), pages 1214-1225.
    2. Shi, Wei & Han, Jonghoon & Kim, Changwan & Lee, Daeyong & Shin, Hyunkyoung & Park, Hyunchul, 2015. "Feasibility study of offshore wind turbine substructures for southwest offshore wind farm project in Korea," Renewable Energy, Elsevier, vol. 74(C), pages 406-413.
    3. Lee, Yeon-Seung & Choi, Byung-Lyul & Lee, Ji Hyun & Kim, Soo Young & Han, Soonhung, 2014. "Reliability-based design optimization of monopile transition piece for offshore wind turbine system," Renewable Energy, Elsevier, vol. 71(C), pages 729-741.
    4. I-Wen Chen & Bao-Leng Wong & Yu-Hung Lin & Shiu-Wu Chau & Hsin-Haou Huang, 2016. "Design and Analysis of Jacket Substructures for Offshore Wind Turbines," Energies, MDPI, vol. 9(4), pages 1-24, April.
    5. Amirinia, Gholamreza & Mafi, Somayeh & Mazaheri, Said, 2017. "Offshore wind resource assessment of Persian Gulf using uncertainty analysis and GIS," Renewable Energy, Elsevier, vol. 113(C), pages 915-929.
    6. Adedipe, Oyewole & Brennan, Feargal & Kolios, Athanasios, 2016. "Review of corrosion fatigue in offshore structures: Present status and challenges in the offshore wind sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 141-154.
    7. Astariz, S. & Iglesias, G., 2016. "Output power smoothing and reduced downtime period by combined wind and wave energy farms," Energy, Elsevier, vol. 97(C), pages 69-81.
    8. Luengo, Jorge & Negro, Vicente & García-Barba, Javier & López-Gutiérrez, José-Santos & Esteban, M. Dolores, 2019. "New detected uncertainties in the design of foundations for offshore Wind Turbines," Renewable Energy, Elsevier, vol. 131(C), pages 667-677.
    9. Sun, Xiaojing & Huang, Diangui & Wu, Guoqing, 2012. "The current state of offshore wind energy technology development," Energy, Elsevier, vol. 41(1), pages 298-312.
    10. Yang, J.J. & He, E.M., 2020. "Coupled modeling and structural vibration control for floating offshore wind turbine," Renewable Energy, Elsevier, vol. 157(C), pages 678-694.
    11. Baisthakur, Shubham & Fitzgerald, Breiffni, 2024. "Physics-Informed Neural Network surrogate model for bypassing Blade Element Momentum theory in wind turbine aerodynamic load estimation," Renewable Energy, Elsevier, vol. 224(C).
    12. Liu, Fushun & Li, Huajun & Li, Wei & Wang, Bin, 2014. "Experimental study of improved modal strain energy method for damage localisation in jacket-type offshore wind turbines," Renewable Energy, Elsevier, vol. 72(C), pages 174-181.
    13. Karimirad, Madjid & Michailides, Constantine, 2015. "V-shaped semisubmersible offshore wind turbine: An alternative concept for offshore wind technology," Renewable Energy, Elsevier, vol. 83(C), pages 126-143.
    14. Li Zhou & Shifeng Ding & Ming Song & Junliang Gao & Wei Shi, 2019. "A Simulation of Non-Simultaneous Ice Crushing Force for Wind Turbine Towers with Large Slopes," Energies, MDPI, vol. 12(13), pages 1-21, July.
    15. Farboud Khatami & Erfan Goharian, 2022. "Beyond Profitable Shifts to Green Energies, towards Energy Sustainability," Sustainability, MDPI, vol. 14(8), pages 1-28, April.
    16. Vinel, Alexander & Mortaz, Ebrahim, 2019. "Optimal pooling of renewable energy sources with a risk-averse approach: Implications for US energy portfolio," Energy Policy, Elsevier, vol. 132(C), pages 928-939.
    17. Stefan Ćetković & Aron Buzogány & Miranda Schreurs, 2016. "Varieties of clean energy transitions in Europe: Political-economic foundations of onshore and offshore wind development," WIDER Working Paper Series wp-2016-18, World Institute for Development Economic Research (UNU-WIDER).
    18. Wan, Ling & Moan, Torgeir & Gao, Zhen & Shi, Wei, 2024. "A review on the technical development of combined wind and wave energy conversion systems," Energy, Elsevier, vol. 294(C).
    19. Hongyan Ding & Zuntao Feng & Puyang Zhang & Conghuan Le & Yaohua Guo, 2020. "Floating Performance of a Composite Bucket Foundation with an Offshore Wind Tower during Transportation," Energies, MDPI, vol. 13(4), pages 1-19, February.
    20. Halliday, J. Ross & Dorrell, David G. & Wood, Alan R., 2011. "An application of the Fast Fourier Transform to the short-term prediction of sea wave behaviour," Renewable Energy, Elsevier, vol. 36(6), pages 1685-1692.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:101:y:2017:i:c:p:550-564. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.