IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i13p3919-d585628.html
   My bibliography  Save this article

Ground-Source Heat Pump Systems: The Effects of Variable Trench Separations and Pipe Configurations in Horizontal Ground Heat Exchangers

Author

Listed:
  • Yu Zhou

    (China Construction Science and Technology Group Co. Ltd., Shenzhen 518000, China
    Department of Infrastructure Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia)

  • Asal Bidarmaghz

    (School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia)

  • Nikolas Makasis

    (Department of Infrastructure Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia
    Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK)

  • Guillermo Narsilio

    (Department of Infrastructure Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia)

Abstract

Ground-source heat pump systems are renewable and highly efficient HVAC systems that utilise the ground to exchange heat via ground heat exchangers (GHEs). This study developed a detailed 3D finite element model for horizontal GHEs by using COMSOL Multiphysics and validated it against a fully instrumented system under the loading conditions of rural industries in NSW, Australia. First, the yearly performance evaluation of the horizontal straight GHEs showed an adequate initial design under the unique loads. This study then evaluated the effects of variable trench separations, GHE configurations, and effective thermal conductivity. Different trench separations that varied between 1.2 and 3.5 m were selected and analysed while considering three different horizontal loop configurations, i.e., the horizontal straight, slinky, and dense slinky loop configurations. These configurations had the same length of pipe in one trench, and the first two had the same trench length as well. The results revealed that when the trench separation became smaller, there was a minor increasing trend (0.5 °C) in the carrier fluid temperature. As for the configuration, the dense slinky loop showed an average that was 1.5 °C lower than those of the horizontal straight and slinky loop (which were about the same). This indicates that, when land is limited, compromises on the trench separation should be made first in lieu of changes in the loop configuration. Lastly, the results showed that although the effective thermal conductivity had an impact on the carrier fluid temperature, this impact was much lower compared to that for the GHE configurations and trench separations.

Suggested Citation

  • Yu Zhou & Asal Bidarmaghz & Nikolas Makasis & Guillermo Narsilio, 2021. "Ground-Source Heat Pump Systems: The Effects of Variable Trench Separations and Pipe Configurations in Horizontal Ground Heat Exchangers," Energies, MDPI, vol. 14(13), pages 1-15, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:3919-:d:585628
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/13/3919/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/13/3919/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mustafa Omer, Abdeen, 2008. "Ground-source heat pumps systems and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(2), pages 344-371, February.
    2. Chong, Chiew Shan Anthony & Gan, Guohui & Verhoef, Anne & Garcia, Raquel Gonzalez & Vidale, Pier Luigi, 2013. "Simulation of thermal performance of horizontal slinky-loop heat exchangers for ground source heat pumps," Applied Energy, Elsevier, vol. 104(C), pages 603-610.
    3. Self, Stuart J. & Reddy, Bale V. & Rosen, Marc A., 2013. "Geothermal heat pump systems: Status review and comparison with other heating options," Applied Energy, Elsevier, vol. 101(C), pages 341-348.
    4. Lu, Qi & Narsilio, Guillermo A. & Aditya, Gregorius Riyan & Johnston, Ian W., 2017. "Economic analysis of vertical ground source heat pump systems in Melbourne," Energy, Elsevier, vol. 125(C), pages 107-117.
    5. Go, Gyu-Hyun & Lee, Seung-Rae & Yoon, Seok & Kim, Min-Jun, 2016. "Optimum design of horizontal ground-coupled heat pump systems using spiral-coil-loop heat exchangers," Applied Energy, Elsevier, vol. 162(C), pages 330-345.
    6. Tarnawski, V.R. & Leong, W.H. & Momose, T. & Hamada, Y., 2009. "Analysis of ground source heat pumps with horizontal ground heat exchangers for northern Japan," Renewable Energy, Elsevier, vol. 34(1), pages 127-134.
    7. Webb, Matthew & Aye, Lu & Green, Ray, 2018. "Simulation of a biomimetic façade using TRNSYS," Applied Energy, Elsevier, vol. 213(C), pages 670-694.
    8. Zhou, Zhihua & Zhang, Zhiming & Chen, Guanyi & Zuo, Jian & Xu, Pan & Meng, Chong & Yu, Zhun, 2016. "Feasibility of ground coupled heat pumps in office buildings: A China study," Applied Energy, Elsevier, vol. 162(C), pages 266-277.
    9. Han, Chanjuan & Yu, Xiong (Bill), 2016. "Performance of a residential ground source heat pump system in sedimentary rock formation," Applied Energy, Elsevier, vol. 164(C), pages 89-98.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Schwarz, Hans & Lin, Jian & Bertermann, David, 2024. "Use of electrical resistivity tomography measurements for investigation of different grouting materials for very shallow geothermal applications within varying seasonal conditions; Applied on a geothe," Renewable Energy, Elsevier, vol. 228(C).
    2. Mushk Bughio & Swati Bahale & Waqas Ahmed Mahar & Thorsten Schuetze, 2022. "Parametric Performance Analysis of the Cooling Potential of Earth-to-Air Heat Exchangers in Hot and Humid Climates," Energies, MDPI, vol. 15(19), pages 1-21, September.
    3. Luo, Mingrui & Yuan, Zuobing & Fan, Lintao & Tao, Liangliang & Zeng, Yanhua & Yuan, Yanping & Zhou, Jiamei, 2024. "Effects of longitudinal ventilation and GHEs on geothermal energy extraction and HRC in high geothermal tunnels," Renewable Energy, Elsevier, vol. 232(C).
    4. Tomasz Janusz Teleszewski & Dorota Anna Krawczyk & Jose María Fernandez-Rodriguez & Angélica Lozano-Lunar & Antonio Rodero, 2022. "The Study of Soil Temperature Distribution for Very Low-Temperature Geothermal Energy Applications in Selected Locations of Temperate and Subtropical Climate," Energies, MDPI, vol. 15(9), pages 1-19, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sorranat Ratchawang & Srilert Chotpantarat & Sasimook Chokchai & Isao Takashima & Youhei Uchida & Punya Charusiri, 2022. "A Review of Ground Source Heat Pump Application for Space Cooling in Southeast Asia," Energies, MDPI, vol. 15(14), pages 1-18, July.
    2. Hou, Gaoyang & Taherian, Hessam & Song, Ying & Jiang, Wei & Chen, Diyi, 2022. "A systematic review on optimal analysis of horizontal heat exchangers in ground source heat pump systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    3. Somogyi, Viola & Sebestyén, Viktor & Nagy, Georgina, 2017. "Scientific achievements and regulation of shallow geothermal systems in six European countries – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 934-952.
    4. Kayaci, Nurullah, 2020. "Energy and exergy analysis and thermo-economic optimization of the ground source heat pump integrated with radiant wall panel and fan-coil unit with floor heating or radiator," Renewable Energy, Elsevier, vol. 160(C), pages 333-349.
    5. Jing, Zefeng & Wang, Huaijiu & Feng, Chenchen & Wang, Shuzhong, 2020. "Numerical study on the heat characteristics of a novel artificial seepage thermal storage based on the successive four seasons," Renewable Energy, Elsevier, vol. 160(C), pages 1185-1193.
    6. Go, Gyu-Hyun & Lee, Seung-Rae & Yoon, Seok & Kim, Min-Jun, 2016. "Optimum design of horizontal ground-coupled heat pump systems using spiral-coil-loop heat exchangers," Applied Energy, Elsevier, vol. 162(C), pages 330-345.
    7. Yu Zhou & Guillermo A. Narsilio & Kenichi Soga & Lu Aye, 2024. "Achieving Pareto Optimum for Hybrid Geothermal–Solar (PV)–Gas Heating Systems: Minimising Lifecycle Cost and Greenhouse Gas Emissions," Sustainability, MDPI, vol. 16(15), pages 1-26, August.
    8. Eloisa Di Sipio & David Bertermann, 2017. "Factors Influencing the Thermal Efficiency of Horizontal Ground Heat Exchangers," Energies, MDPI, vol. 10(11), pages 1-21, November.
    9. Javadi, Hossein & Mousavi Ajarostaghi, Seyed Soheil & Rosen, Marc A. & Pourfallah, Mohsen, 2019. "Performance of ground heat exchangers: A comprehensive review of recent advances," Energy, Elsevier, vol. 178(C), pages 207-233.
    10. Charlesworth, S.M. & Faraj-Llyod, A.S. & Coupe, S.J., 2017. "Renewable energy combined with sustainable drainage: Ground source heat and pervious paving," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 912-919.
    11. Selamat, Salsuwanda & Miyara, Akio & Kariya, Keishi, 2016. "Numerical study of horizontal ground heat exchangers for design optimization," Renewable Energy, Elsevier, vol. 95(C), pages 561-573.
    12. Nikitin, Andrey & Farahnak, Mehdi & Deymi-Dashtebayaz, Mahdi & Muraveinikov, Sergei & Nikitina, Veronika & Nazeri, Reza, 2022. "Effect of ice thickness and snow cover depth on performance optimization of ground source heat pump based on the energy, exergy, economic and environmental analysis," Renewable Energy, Elsevier, vol. 185(C), pages 1301-1317.
    13. Nguyen, Hiep V. & Law, Ying Lam E. & Alavy, Masih & Walsh, Philip R. & Leong, Wey H. & Dworkin, Seth B., 2014. "An analysis of the factors affecting hybrid ground-source heat pump installation potential in North America," Applied Energy, Elsevier, vol. 125(C), pages 28-38.
    14. Naili, Nabiha & Kooli, Sami, 2021. "Solar-assisted ground source heat pump system operated in heating mode: A case study in Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    15. Ma, Hongting & Li, Cong & Lu, Wenqian & Zhang, Zeyu & Yu, Shaojie & Du, Na, 2017. "Investigation on a solar-groundwater heat pump unit associated with radiant floor heating," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 972-977.
    16. Weidong Lyu & Hefu Pu & Jiannan (Nick) Chen, 2020. "Thermal Performance of an Energy Pile Group with a Deeply Penetrating U-Shaped Heat Exchanger," Energies, MDPI, vol. 13(21), pages 1-17, November.
    17. Liu, Zhengguang & Wang, Wene & Chen, Yuntian & Wang, Lili & Guo, Zhiling & Yang, Xiaohu & Yan, Jinyue, 2023. "Solar harvest: Enhancing carbon sequestration and energy efficiency in solar greenhouses with PVT and GSHP systems," Renewable Energy, Elsevier, vol. 211(C), pages 112-125.
    18. Karytsas, Spyridon & Choropanitis, Ioannis, 2017. "Barriers against and actions towards renewable energy technologies diffusion: A Principal Component Analysis for residential ground source heat pump (GSHP) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 252-271.
    19. Michael-Allan Millar & Neil M. Burnside & Zhibin Yu, 2019. "District Heating Challenges for the UK," Energies, MDPI, vol. 12(2), pages 1-21, January.
    20. Mihalakakou, Giouli & Souliotis, Manolis & Papadaki, Maria & Halkos, George & Paravantis, John & Makridis, Sofoklis & Papaefthimiou, Spiros, 2022. "Applications of earth-to-air heat exchangers: A holistic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:3919-:d:585628. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.