IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v130y2019icp130-138.html
   My bibliography  Save this article

Estimation of building energy consumption using weather information derived from photovoltaic power plants

Author

Listed:
  • Fu, Xueqian
  • Zhang, Xiurong

Abstract

Photovoltaic power must be measured for billing purposes and to provide power injection information. To emphasise the importance of weather information derived from photovoltaic power data, we consider how building energy consumption is estimated. Photovoltaic power can be treated as an input to an energy consumption model rather than weather information (solar insolation, temperature, and/or relative humidity). We use a partial, mutual information algorithm for selection of the input variables required by a building consumption model; the data are derived from adjacent photovoltaic power stations. When weather information imparted by photovoltaic power is inadequate, the accuracy of energy consumption estimations can be improved by combining an empirical mode decomposition algorithm and an extreme-learning machine algorithm. Our energy consumption estimations, based on partial mutual information, empirical mode decomposition, and use of an extreme-learning machine, were verified using real data from Beijing and Guangzhou, China. The simulations show that the precision of estimation can be increased by fully exploiting the interdependence of photovoltaic power and building energy consumption.

Suggested Citation

  • Fu, Xueqian & Zhang, Xiurong, 2019. "Estimation of building energy consumption using weather information derived from photovoltaic power plants," Renewable Energy, Elsevier, vol. 130(C), pages 130-138.
  • Handle: RePEc:eee:renene:v:130:y:2019:i:c:p:130-138
    DOI: 10.1016/j.renene.2018.06.069
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118307213
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.06.069?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cellura, Maurizio & Guarino, Francesco & Longo, Sonia & Mistretta, Marina & Orioli, Aldo, 2013. "The role of the building sector for reducing energy consumption and greenhouse gases: An Italian case study," Renewable Energy, Elsevier, vol. 60(C), pages 586-597.
    2. Fu, Xueqian & Chen, Haoyong & Cai, Runqing & Yang, Ping, 2015. "Optimal allocation and adaptive VAR control of PV-DG in distribution networks," Applied Energy, Elsevier, vol. 137(C), pages 173-182.
    3. Fu, Xueqian & Guo, Qinglai & Sun, Hongbin & Zhang, Xiurong & Wang, Li, 2017. "Estimation of the failure probability of an integrated energy system based on the first order reliability method," Energy, Elsevier, vol. 134(C), pages 1068-1078.
    4. Katsaprakakis, Dimitris Al. & Georgila, Klairi & Zidianakis, Georgios & Michopoulos, Apostolos & Psarras, Nikolaos & Christakis, Dimitris G. & Condaxakis, Constantinos & Kanouras, Spyros, 2017. "Energy upgrading of buildings. A holistic approach for the Natural History Museum of Crete, Greece," Renewable Energy, Elsevier, vol. 114(PB), pages 1306-1332.
    5. Chwieduk, Dorota A., 2017. "Towards modern options of energy conservation in buildings," Renewable Energy, Elsevier, vol. 101(C), pages 1194-1202.
    6. Fu, Xueqian & Sun, Hongbin & Guo, Qinglai & Pan, Zhaoguang & Zhang, Xiurong & Zeng, Shunqi, 2017. "Probabilistic power flow analysis considering the dependence between power and heat," Applied Energy, Elsevier, vol. 191(C), pages 582-592.
    7. Edwards, Erwin Elliot & Iyare, O.S. & Moseley, L.L., 2012. "Energy consumption in typical Caribbean office buildings: A potential short term solution to energy concerns," Renewable Energy, Elsevier, vol. 39(1), pages 154-161.
    8. Fu, Xueqian & Sun, Hongbin & Guo, Qinglai & Pan, Zhaoguang & Xiong, Wen & Wang, Li, 2017. "Uncertainty analysis of an integrated energy system based on information theory," Energy, Elsevier, vol. 122(C), pages 649-662.
    9. Hsu, David, 2015. "Comparison of integrated clustering methods for accurate and stable prediction of building energy consumption data," Applied Energy, Elsevier, vol. 160(C), pages 153-163.
    10. Mauser, Ingo & Müller, Jan & Allerding, Florian & Schmeck, Hartmut, 2016. "Adaptive building energy management with multiple commodities and flexible evolutionary optimization," Renewable Energy, Elsevier, vol. 87(P2), pages 911-921.
    11. Refahi, Amir Hossein & Talkhabi, Hossein, 2015. "Investigating the effective factors on the reduction of energy consumption in residential buildings with green roofs," Renewable Energy, Elsevier, vol. 80(C), pages 595-603.
    12. Fu, Xueqian & Guo, Qinglai & Sun, Hongbin & Pan, Zhaoguang & Xiong, Wen & Wang, Li, 2017. "Typical scenario set generation algorithm for an integrated energy system based on the Wasserstein distance metric," Energy, Elsevier, vol. 135(C), pages 153-170.
    13. Zhao, Hai-xiang & Magoulès, Frédéric, 2012. "A review on the prediction of building energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3586-3592.
    14. Eguía Oller, Pablo & Alonso Rodríguez, José María & Saavedra González, Ángeles & Arce Fariña, Elena & Granada Álvarez, Enrique, 2018. "Improving the calibration of building simulation with interpolated weather datasets," Renewable Energy, Elsevier, vol. 122(C), pages 608-618.
    15. Naji, Sareh & Shamshirband, Shahaboddin & Basser, Hossein & Keivani, Afram & Alengaram, U. Johnson & Jumaat, Mohd Zamin & Petković, Dalibor, 2016. "Application of adaptive neuro-fuzzy methodology for estimating building energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1520-1528.
    16. Dotzauer, Erik, 2002. "Simple model for prediction of loads in district-heating systems," Applied Energy, Elsevier, vol. 73(3-4), pages 277-284, November.
    17. Li, Baizhan & Yao, Runming, 2009. "Urbanisation and its impact on building energy consumption and efficiency in China," Renewable Energy, Elsevier, vol. 34(9), pages 1994-1998.
    18. Naji, Sareh & Keivani, Afram & Shamshirband, Shahaboddin & Alengaram, U. Johnson & Jumaat, Mohd Zamin & Mansor, Zulkefli & Lee, Malrey, 2016. "Estimating building energy consumption using extreme learning machine method," Energy, Elsevier, vol. 97(C), pages 506-516.
    19. Xiang-Li, Li & Zhi-Yong, Ren & Lin, Duanmu, 2015. "An investigation on life-cycle energy consumption and carbon emissions of building space heating and cooling systems," Renewable Energy, Elsevier, vol. 84(C), pages 124-129.
    20. Fu, Xueqian & Zhang, Xiurong, 2018. "Failure probability estimation of gas supply using the central moment method in an integrated energy system," Applied Energy, Elsevier, vol. 219(C), pages 1-10.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sharifzadeh, Mahdi & Sikinioti-Lock, Alexandra & Shah, Nilay, 2019. "Machine-learning methods for integrated renewable power generation: A comparative study of artificial neural networks, support vector regression, and Gaussian Process Regression," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 513-538.
    2. Tariq, Rasikh & Torres-Aguilar, C.E. & Sheikh, Nadeem Ahmed & Ahmad, Tanveer & Xamán, J. & Bassam, A., 2022. "Data engineering for digital twining and optimization of naturally ventilated solar façade with phase changing material under global projection scenarios," Renewable Energy, Elsevier, vol. 187(C), pages 1184-1203.
    3. Fu, Xueqian & Zhang, Xiurong & Qiao, Zheng & Li, Gengyin, 2019. "Estimating the failure probability in an integrated energy system considering correlations among failure patterns," Energy, Elsevier, vol. 178(C), pages 656-666.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fu, Xueqian & Zhang, Xiurong & Qiao, Zheng & Li, Gengyin, 2019. "Estimating the failure probability in an integrated energy system considering correlations among failure patterns," Energy, Elsevier, vol. 178(C), pages 656-666.
    2. Fu, Xueqian & Li, Gengyin & Zhang, Xiurong & Qiao, Zheng, 2018. "Failure probability estimation of the gas supply using a data-driven model in an integrated energy system," Applied Energy, Elsevier, vol. 232(C), pages 704-714.
    3. Fu, Xueqian & Li, Gengyin & Wang, Huaizhi, 2018. "Use of a second-order reliability method to estimate the failure probability of an integrated energy system," Energy, Elsevier, vol. 161(C), pages 425-434.
    4. Chi, Lixun & Su, Huai & Zio, Enrico & Zhang, Jinjun & Li, Xueyi & Zhang, Li & Fan, Lin & Zhou, Jing & Bai, Hua, 2020. "Integrated Deterministic and Probabilistic Safety Analysis of Integrated Energy Systems with bi-directional conversion," Energy, Elsevier, vol. 212(C).
    5. Fu, Xueqian & Zhang, Xiurong, 2018. "Failure probability estimation of gas supply using the central moment method in an integrated energy system," Applied Energy, Elsevier, vol. 219(C), pages 1-10.
    6. Chou, Jui-Sheng & Tran, Duc-Son, 2018. "Forecasting energy consumption time series using machine learning techniques based on usage patterns of residential householders," Energy, Elsevier, vol. 165(PB), pages 709-726.
    7. Chi, Lixun & Su, Huai & Zio, Enrico & Qadrdan, Meysam & Zhou, Jing & Zhang, Li & Fan, Lin & Yang, Zhaoming & Xie, Fei & Zuo, Lili & Zhang, Jinjun, 2023. "A systematic framework for the assessment of the reliability of energy supply in Integrated Energy Systems based on a quasi-steady-state model," Energy, Elsevier, vol. 263(PB).
    8. Fu, Xueqian & Guo, Qinglai & Sun, Hongbin & Pan, Zhaoguang & Xiong, Wen & Wang, Li, 2017. "Typical scenario set generation algorithm for an integrated energy system based on the Wasserstein distance metric," Energy, Elsevier, vol. 135(C), pages 153-170.
    9. Fu, Xueqian & Guo, Qinglai & Sun, Hongbin & Zhang, Xiurong & Wang, Li, 2017. "Estimation of the failure probability of an integrated energy system based on the first order reliability method," Energy, Elsevier, vol. 134(C), pages 1068-1078.
    10. Chengdong Li & Zixiang Ding & Dongbin Zhao & Jianqiang Yi & Guiqing Zhang, 2017. "Building Energy Consumption Prediction: An Extreme Deep Learning Approach," Energies, MDPI, vol. 10(10), pages 1-20, October.
    11. Chou, Jui-Sheng & Ngo, Ngoc-Tri, 2016. "Time series analytics using sliding window metaheuristic optimization-based machine learning system for identifying building energy consumption patterns," Applied Energy, Elsevier, vol. 177(C), pages 751-770.
    12. Amasyali, Kadir & El-Gohary, Nora M., 2018. "A review of data-driven building energy consumption prediction studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1192-1205.
    13. Talebi, Behrang & Haghighat, Fariborz & Tuohy, Paul & Mirzaei, Parham A., 2018. "Validation of a community district energy system model using field measured data," Energy, Elsevier, vol. 144(C), pages 694-706.
    14. Papadopoulos, Sokratis & Bonczak, Bartosz & Kontokosta, Constantine E., 2018. "Pattern recognition in building energy performance over time using energy benchmarking data," Applied Energy, Elsevier, vol. 221(C), pages 576-586.
    15. Ma, Weiwu & Fang, Song & Liu, Gang & Zhou, Ruoyu, 2017. "Modeling of district load forecasting for distributed energy system," Applied Energy, Elsevier, vol. 204(C), pages 181-205.
    16. Zhao, Dong-Xue & He, Bao-Jie & Johnson, Christine & Mou, Ben, 2015. "Social problems of green buildings: From the humanistic needs to social acceptance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1594-1609.
    17. Ciulla, G. & D'Amico, A., 2019. "Building energy performance forecasting: A multiple linear regression approach," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    18. Venkatraj, V. & Dixit, M.K., 2022. "Challenges in implementing data-driven approaches for building life cycle energy assessment: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    19. Wang, Zeyu & Srinivasan, Ravi S., 2017. "A review of artificial intelligence based building energy use prediction: Contrasting the capabilities of single and ensemble prediction models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 796-808.
    20. O’Neill, Zheng & O’Neill, Charles, 2016. "Development of a probabilistic graphical model for predicting building energy performance," Applied Energy, Elsevier, vol. 164(C), pages 650-658.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:130:y:2019:i:c:p:130-138. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.